498 resultados para radionuclides
Resumo:
We introduce a dominance intensity measuring method to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision-making problems on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider the situation where there is imprecision concerning decision-makers’ preferences, and imprecise weights are represented by trapezoidal fuzzy weights.The proposed method is based on the dominance values between pairs of alternatives. These values can be computed by linear programming, as an additive multi-attribute utility model is used to rate the alternatives. Dominance values are then transformed into dominance intensity measures, used to rank the alternatives under consideration. Distances between fuzzy numbers based on the generalization of the left and right fuzzy numbers are utilized to account for fuzzy weights. An example concerning the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides illustrates the approach. Monte Carlo simulation techniques have been used to show that the proposed method performs well for different imprecision levels in terms of a hit ratio and a rank-order correlation measure.
Resumo:
Recientemente se ha demostrado la existencia de microorganismos en las piscinas de almacenamiento de combustible nuclear gastado en las centrales nucleares utilizando técnicas convencionales de cultivo en el laboratorio. Estudios posteriores han puesto de manifiesto que los microorganismos presentes eran capaces de colonizar las paredes de acero inoxidable de las piscinas formando biopelículas. Adicionalmente se ha observado la capacidad de estas biopelículas de retener radionúclidos, lo que hace pensar en la posibilidad de utilizarlas en la descontaminación de las aguas radiactivas de las piscinas. En la presente tesis se plantea conocer más profundamente la biodiversidad microbiana de las biopelículas utilizando técnicas de biología molecular como la clonación, además de desarrollar un sistema de descontaminación a escala piloto con el objetivo de valorar si el proceso podría resultar escalable a nivel industrial. Para ello se diseñaron y fabricaron dos biorreactores en acero inoxidable compatibles con las condiciones específicas de seguridad sísmica y protección frente a la radiación en la zona controlada de una central nuclear. Los biorreactores se instalaron en la Central Nuclear de Cofrentes (Valencia) en las proximidades de las piscinas de almacenamiento de combustible nuclear gastado y precediendo a las resinas de intercambio iónico, de forma que reciben el agua de las piscinas permitiendo el análisis in situ de la radiación eliminada del agua de las mismas. Se conectó una lámpara de luz ultravioleta a uno de los biorreactores para poder comparar el desarrollo de bipelículas y la retención de radiactividad en ambas condiciones. En estos biorreactores se introdujeron ovillos de acero inoxidable y de titanio que se extrajeron a diversos tiempos, hasta 635 días para los ovillos de acero inoxidable y hasta 309 días para los ovillos de titanio. Se analizaron las biopelículas desarrolladas sobre los ovillos por microscopía electrónica de barrido y por microscopía de epifluorescencia. Se extrajo el ADN de las biopelículas y, tras su clonación, se identificaron los microorganismos por técnicas independientes de cultivo. Asimismo se determinó por espectrometría gamma la capacidad de las biopelículas para retener radionúclidos. Los microorganismos radiorresistentes identificados pertenecen a los grupos filogenéticos Alpha-proteobacteria, Gamma-proteobacteria, Actinobacteria, Deinococcus-Thermus y Bacteroidetes. Las secuencias de estos microorganismos se han depositado en el GenBank con los números de acceso KR817260-KR817405. Se ha observado una distribución porcentual ligeramente diferente en relación con el tipo de biorreactor. Las biopelículas han retenido fundamentalmente radionúclidos de activación. La suma de Co-60 y Mn-54 ha llegado en ocasiones al 97%. Otros radionúclidos retenidos han sido Cr-51, Co-58, Fe-59, Zn-65 y Zr-95. Se sugiere un mecanismo del proceso de retención de radionúclidos relacionado con el tiempo de formación y desaparición de las biopelículas. Se ha valorado que el proceso escalable puede ser económicamente rentable. ABSTRACT The existence of microorganisms in spent nuclear fuel pools has been demonstrated recently in nuclear power plants by using conventional microbial techniques. Subsequent studies have revealed that those microorganisms were able to colonize the stainless steel pool walls forming biofilms. Additionally, it has been observed the ability of these biofilms to retain radionuclides, which suggests the possibility of using them for radioactive water decontamination purposes. This thesis presents deeper knowledge of microbial biofilms biodiversity by using molecular biology techniques such as cloning, and develops a decontamination system on a pilot scale, in order to assess whether the process could be scalable to an industrial level. Aiming to demonstrate this was feasible, two stainless steel bioreactors were designed and manufactured, both were compatible with seismic and radiation protection standards in the controlled zone of a nuclear plant. These bioreactors were installed in the Cofrentes Nuclear Power Plant (Valencia) next to the spent nuclear fuel pools and preceding (upstream) ion exchange resins. This configuration allowed the bioreactors to receive water directly from the pools allowing in situ analysis of radiation removal. One ultraviolet lamp was connected to one of the bioreactors to compare biofilms development and radioactivity retention in both conditions. Stainless steel and titanium balls were introduced into these bioreactors and were removed after different time periods, up to 635 days for stainless steel balls and up to 309 days for titanium. Biofilms developed on the balls were analyzed by scanning electron microscopy and epifluorescence microscopy. DNA was extracted from the biofilms, was cloned and then the microorganisms were identified by independent culture techniques. Biofilms ability to retain radionuclides was also determined by gamma spectrometry. The identified radioresistant organisms belong to the phylogenetic groups Alphaproteobacteria, Gamma-proteobacteria, Actinobacteria, Deinococcus-Thermus and Bacteroidetes. The sequences of these microorganisms have been deposited in GenBank (access numbers KR817260-KR817405). A different distribution of microorganisms was observed in relation to the type of bioreactor. Biofilms have essentially retained activation radionuclides. Sometimes the sum of Co-60 and Mn-54 reached 97%. Cr-51, Co-58, Fe-59, Zn-65 and Zr-95 have also been retained. A radionuclide retention process mechanism related to biofilms formation and disappearance time is suggested. It has been assessed that the scalable process can be economically profitable.
Resumo:
Rapid imaging by antitumor antibodies has been limited by the prolonged targeting kinetics and clearance of labeled whole antibodies. Genetically engineered fragments with rapid access and high retention in tumor tissue combined with rapid blood clearance are suitable for labeling with short-lived radionuclides, including positron-emitting isotopes for positron-emission tomography (PET). An engineered fragment was developed from the high-affinity anticarcinoembryonic antigen (CEA) monoclonal antibody T84.66. This single-chain variable fragment (Fv)-CH3, or minibody, was produced as a bivalent 80 kDa dimer. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N′,N′′, N′′′-tetraacetic acid (DOTA) was conjugated to the anti-CEA minibody for labeling with copper-64, a positron-emitting radionuclide (t1/2 = 12.7 h). In vivo distribution was evaluated in athymic mice bearing paired LS174T human colon carcinoma (CEA positive) and C6 rat glioma (CEA negative) xenografts. Five hours after injection with 64Cu-DOTA-minibody, microPET imaging showed high uptake in CEA-positive tumor (17.9% injected dose per gram ± 3.79) compared with control tumor (6.0% injected dose per gram ± 1.0). In addition, significant uptake was seen in liver, with low uptake in other tissues. Average target/background ratios relative to neighboring tissue were 3–4:1. Engineered antibody fragments labeled with positron-emitting isotopes such as copper-64 provide a new class of agents for PET imaging of tumors.
Resumo:
A radioterapia interna seletiva é uma alternativa para o tratamento de alguns tipos de cânceres como o carcinoma hepatocelular (CHC), ou câncer de fígado primário. Neste tratamento, microesferas de vidro ou polimérica contendo em sua estrutura radionuclídeos emissores de partículas β- são introduzidas no fígado por meio da artéria hepática e migram, preferencialmente, para regiões hipervascularizadas, que são características da presença de tecido canceroso. Neste trabalho, foram propostos o desenvolvimento de vidros fosfato contendo hólmio para produção de microesferas e sua aplicação em radioterapia interna seletiva no Brasil. O vidro desenvolvido apresentou durabilidade química adequada, densidade de 2,7(3)g/cm3, alta estabilidade térmica e as impurezas encontradas não inviabilizam o tratamento. As microesferas foram produzidas pelos métodos da chama e da queda gravitacional e foram caracterizadas por diversas técnicas em que se observaram forma, granulometria, atividade e biocompatibilidade apropriados para o tratamento pretendido. Propõe-se que as microesferas possam ser submetidas a testes in vivo.
Resumo:
Results of measurements of Cs-137 and Co-60 concentrations in bottom sediments of the Northwestern Black Sea indicate inhomogenity of their distribution both over the studied area and along sediment cores. Intermittency of sediment layers with different concentration of radionuclides in the cores reflects active horizontal movements and redistribution of sediments on the shelf and continental slope. As a result sediment layers dated by the Chernobyl mark as seven years old were found in the 5-7 cm depth layer. Maximum Cs-137 concentration in the surface sedimentary layer on the shelf was 42 mBq/g. Maximum Co-60 concentration of 1320 mBq/g was measured due to a hot particle. No correlation was found between Cs-137 and the Co-60 contents.
Resumo:
Sulfide, S°, and thiosulfate were determined in waters of the Baltic Sea. Microquantities of these compounds were observed in oxic waters. Concentration levels of reduced sulfur compounds in Baltic oxic waters were very close to levels of the Black Sea oxic zone. Thiosulfate and S° were predominate compounds in oxic water whereas sulfide was a predominant compound Baltic waters high in hydrogen sulfide. Conclusion was made that during sedimentation in oxic waters anaerobic microorganisms along with aerobic bacteria take part in mineralization of organic matter. They exist on surfaces and in microniches of particles of organic detritus.
Resumo:
Sulfide, S°, and thiosulfate were determined in waters of the Baltic Sea. Microquantities of these compounds were observed in oxic waters. Concentration levels of reduced sulfur compounds in Baltic oxic waters were very close to levels of the Black Sea oxic zone. Thiosulfate and S° were predominate compounds in oxic water whereas sulfide was a predominant compound Baltic waters high in hydrogen sulfide. Conclusion was made that during sedimentation in oxic waters anaerobic microorganisms along with aerobic bacteria take part in mineralization of organic matter. They exist on surfaces and in microniches of particles of organic detritus.
Resumo:
The mobility of the radionuclides of the elements Sr, I, Cs and Ce were investigated for three typical sands of Northern Germany under simulated natural, undersaturated flow conditions. The laboratory experiments include the determination of the flow parameters of the seepwater movement as well as the transport velocities of the radionuclides in the sands. For the three selected sands, the following mobility sequence/order has been established for the radionuclides: I < Sr < Cs < Ce
Resumo:
Through the processes of the biological pump, carbon is exported to the deep ocean in the form of dissolved and particulate organic matter. There are several ways by which downward export fluxes can be estimated. The great attraction of the 234Th technique is that its fundamental operation allows a downward flux rate to be determined from a single water column profile of thorium coupled to an estimate of POC/234Th ratio in sinking matter. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. Data were collected from tables in papers published between 1985 and 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean Longhurst provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220m. Globally the fluxes ranged from -22 to 125 mmol of C/m**2/d. We believe that this database is important for providing new global estimate of the magnitude of the biological carbon pump.
Resumo:
Using as a starting point the results giving 'traditional' growth rates as determined by the decrease of radioelements (part I) and the hypothesis of rapid formation, the different mineralogical, structure and chemical characteristics of the sample have been studied to try to understand the possible mode of formation of this encrustation. A rapid formation would account for (1) the very peculiar structure of the sample composed of oriented botryoids and the bundle-like structure of the outermost oxide layer; (2) the fact that this sample represents a substitution of a preexisting hyaloclastite; (3) the different chemical gradients, mainly iron, thorium and uranium; (4) the fact that this sample which cannot have been maintained at the sediment-water interface by bioturbation is not covered by a great thickness of sediments. On the other hand, an unsolved problem remains: Why different radionuclides used for dating give growth rates of the same order of magnitude and different 'exposition ages'.