988 resultados para radial continuous transmittance filter
Resumo:
The original method, proposed by Yentsch (1957), of determination of chlorophyll directly in the cells, attracts attention by its simplicity. In order to measure the content of chlorophyll by this method, a determined volume of suspension of algae is filtered through a membrane filter. The latter is dried a little, clarified by immersion oil, clamped between two glasses, and spectrophotometrized. Extinction is read off at , wavelengths equal to 670 millimicrons (around the maximum absorption of chlorophyll a in the cell) and 750 millimicrons (correction for non- specific absorption and dispersion of light by particles of the preparation). The method of Yentsch was employed by the authors for determination of chlorophyll-a in samples of phytoplankton. They conclude that in spite of the simplicity and convenience of determination the method must be applied sufficiently carefully. It is more suitable for analysis of cultures of algae, where, non-specific absorption of light is insignificant.
Resumo:
A general review of stochastic processes is given in the introduction; definitions, properties and a rough classification are presented together with the position and scope of the author's work as it fits into the general scheme.
The first section presents a brief summary of the pertinent analytical properties of continuous stochastic processes and their probability-theoretic foundations which are used in the sequel.
The remaining two sections (II and III), comprising the body of the work, are the author's contribution to the theory. It turns out that a very inclusive class of continuous stochastic processes are characterized by a fundamental partial differential equation and its adjoint (the Fokker-Planck equations). The coefficients appearing in those equations assimilate, in a most concise way, all the salient properties of the process, freed from boundary value considerations. The writer’s work consists in characterizing the processes through these coefficients without recourse to solving the partial differential equations.
First, a class of coefficients leading to a unique, continuous process is presented, and several facts are proven to show why this class is restricted. Then, in terms of the coefficients, the unconditional statistics are deduced, these being the mean, variance and covariance. The most general class of coefficients leading to the Gaussian distribution is deduced, and a complete characterization of these processes is presented. By specializing the coefficients, all the known stochastic processes may be readily studied, and some examples of these are presented; viz. the Einstein process, Bachelier process, Ornstein-Uhlenbeck process, etc. The calculations are effectively reduced down to ordinary first order differential equations, and in addition to giving a comprehensive characterization, the derivations are materially simplified over the solution to the original partial differential equations.
In the last section the properties of the integral process are presented. After an expository section on the definition, meaning, and importance of the integral process, a particular example is carried through starting from basic definition. This illustrates the fundamental properties, and an inherent paradox. Next the basic coefficients of the integral process are studied in terms of the original coefficients, and the integral process is uniquely characterized. It is shown that the integral process, with a slight modification, is a continuous Markoff process.
The elementary statistics of the integral process are deduced: means, variances, and covariances, in terms of the original coefficients. It is shown that an integral process is never temporally homogeneous in a non-degenerate process.
Finally, in terms of the original class of admissible coefficients, the statistics of the integral process are explicitly presented, and the integral process of all known continuous processes are specified.
Resumo:
超分辨技术因其可以超越经典的衍射极限而为人们所熟知.并且.在光存储和共焦扫描成像系统中有着广泛的应用。把由两个偏振器和一个圆对称的双折射元件组成的径向双折射滤波器引入超分辨技术,借助琼斯算法推导出其光瞳函数的表达式。由分析得出通过改变径向双折射滤波器中偏振器的偏振方向和双折射元件的主轴之间的夹角,即可实现光学系统的横向超分辨或轴向超分辨。同时对评价该器件超分辨性能的参量第一零点比、斯特尔比和旁瓣强度抑制比做了详细的讨论。该滤波器用于超分辨技术的优点在于其制作不涉及相位的变化而比较简单,且费用比较低。缺点是
Resumo:
A planar lightwave circuit (PLC) add-drop filter is proposed and analyzed, which consists of a symmetric Mach-Zehnder interferometer (MZI) combined with double microring resonators. A critical coupling condition is derived for a better box-like drop spectrum. Comparisons of its characteristics with other schemes, such as a MZI with a single ring resonator, arepresented, and some of the issues about device design and fabrication are also discussed.
Resumo:
A novel second-order polarization-independent filter made of a single ring resonator and a Sagnac interferometer (SRRSI) is proposed, and its filtering characteristics are investigated. By using birefringence in waveguide, a single ring resonator can be used to synthesize a filter with second-order response. Analytical formulas are derived for characteristics of the SRRSI varied with waveguide parameters.. such as the coupling coefficient; and the critical condition of a second-order Butterworth filter is given. The influence of loss in the ring resonator is also analyzed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper is described a novel technique for producing an electro-optical intensity synthesizer which can generate different periodic time domain waveforms through only sine or cosine wave applied-voltages. The synthesizer presented here consists of a series of stages between two polarizers, with each stage consisting of an electro-optic element and a compensator. Every electro-optical element has the same applied-voltage function but different azimuth angles and ratios between the longitudinal and transverse lengths. The main principle is the synthesis of an electro-optic effect and a polarization interference effect in the time domain. This technique is based on an expanded Fourier positive-direction searching algorithm, which can not only simplify the calculation process but also produces many choices of structural parameters for different waveforms generation. A three-stage synthesis of an electro-optical birefringent system for continuous square waveform is undertaken to prove the principle.
Resumo:
The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.
A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.
Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.
Resumo:
超分辨技术中现有的纯振幅型或纯相位型光瞳滤波器,大部分只能实现轴向或横向超分辨而不能实现三维超分辨,三维超分辨在三维成像系统中有着重要的作用。因此为提高成像系统中的三维分辨能力,设计了一种复振幅光瞳滤波器,并对其三维超分辨性能进行了研究。详细分析了该光瞳滤波器的第一区半径和透射率对施特雷尔比、轴向和横向超分辨因子以及旁瓣能量的影响。通过一系列的模拟证明,借助于复振幅光瞳滤波器可以实现三维超分辨。该滤波器的优点是容易实现三维超分辨,且有比较高的施特雷尔比,缺点是三维超分辨的实现总是伴随着旁瓣能量的增加,但可
Resumo:
Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.
Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.
Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.
Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.
Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.
Resumo:
提出一种光瞳滤波器来同时实现横向超分辨和轴向焦移效应的电控制.该光瞳滤波器由两偏光镜及包含有径向双折射元件的任意偏振态的电控旋光器组成。利用径向双折射元件对光偏振态的空间调制作用,结合旋光器对任意偏振态光的旋光作用,与两个偏光镜结合,实现了空间偏振态的重新分布.利用庞加莱球及琼斯理论进行了分析,结果表明,借助这种电致位相延迟来实现的偏振态调制效应,可同时实现横向超分辨与轴向焦移效应。对能够同时获得横向超分辨与轴向焦移的情况进行了分析,得到了系统各组成参量及电光调制范围。