927 resultados para pure shear
Resumo:
We investigated the dielectric properties of pure and lanthanum modified bismuth titanate thin films obtained by the polymeric precursor method. X-ray diffraction of the film annealed at 300 degrees C for 2h indicates a disordered structure. Lanthanum addition increases gradually the dielectric permittivity of films, keeping unchanged their loss tangent. From C-V curve we can see no hysteresis behavior indicating the absence of domain structure. The decrease in the conductivity for the heavily doped Bi4Ti3O12 (BIT) must be associated to the unidentified crystal defects. For comparison, dielectric properties of crystalline BIT film were also investigated. (C) 2007 Published by Elsevier B.V.
Resumo:
The Precambrian Rio Paraíba do Sul Shear Belt comprises a 200-km-wide anastomosing network of NE-SW trending ductile shear zones extending over 1000 km of the southeastern coast of Brazil. Granulitic, gneissic-migmatitic, and granitoid terrains as well as low- to medium-grade metavolcanosedimentary sequences are included within it. These rocks were affected by strong contractional, tangential tectonics, due to west-northwestward oblique convergence of continental blocks. Subsequent transpressional tectonics accomodated large dextral, orogen-parallel movements and shortening. The plutonic Socorro Complex is one of many deformed granites with a foliation subparallel to that of the shear belt and exposes crosscutting relationships between its tectonic, magmatic, and metamorphic structures. These relationships point to a continuous magmatic evolution related to regional thrusts and strike slip, ductile shear zones. The tectonic and magmatic structural features of the Serra do Lopo Granite provide a model of emplacement by sheeting along shear zones during coeval strike-slip and cross shortening of country rocks. Geochronological data indicate that the main igneous activity of Socorro Complex spanned at least 55 million years, from the late stage of the northwestward ductile thrusting (650 Ma), through right-lateral strike slip (595 Ma) deformation. The country rocks yield discordant age data, which reflect a strong imprint of the Transamazonian tectono-metamorphic event (1.9 to 2.0 Ma). We propose a model for the origin of calcalkaline granites of the Ribeira Belt by partial melting of the lower crust with small contributions of the lithospheric mantle during transpressional thickening of plate margins, which were bounded by deep shear zones. The transpressional regime also seems to have focused granite migration from deeper into higher crustal levels along these shear zones.
Resumo:
Thermogravimetry (TG) and other analysis techniques (EDX, SEM, Mapping surface, X-ray diffraction, inductively coupled argon plasma emission spectroscopy and atomic spectrometry with cold vapor generation) were used to study the reaction of Hg with Rh. The results permitted the suggestion that, when subjected to heat, an electrodeposited Hg film reacts with Rh to form intermetallic products with different stabilities, as indicated by at least three mass loss steps. In the first step, between room temperature and 160°C, only the bulk Hg is removed. From this temperature up to about 175°C, the mass loss can be attributed to the desorption of a film of metallic Hg. The last step, from 175 to 240°C, can be ascribed to the removal of Hg from a thin dark film of RhHg2.
Resumo:
A manifestly super-Poincaré covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables.
Resumo:
Recently, the superstring was covariantly quantized using the BRST-like operator Q = ∮ λαdα where λα is a pure spinor and dα are the fermionic Green-Schwarz constraints. By performing a field redefinition and a similarity transformation, this BRST-like operator is mapped to the sum of the Ramond-Neveu-Schwarz BRST operator and η0 ghost. This map is then used to relate physical vertex operators and tree amplitudes in the two formalisms. Furthermore, the map implies the existence of a b ghost in the pure spinor formalism which might be useful for loop amplitude computations.
Resumo:
The ten-dimensional superparticle is covariantly quantized by constructing a BRST operator from the fermionic Green-Schwarz constraints and a bosonic pure spinor variable. This same method was recently used for covariantly quantizing the superstring, and it is hoped that the simpler case of the superparticle will be useful for those who want to study this quantization method. It is interesting that quantization of the superparticle action closely resembles quantization of the worldline action for Chern-Simons theory.
Resumo:
Classical BRST invariance in the pure spinor formalism for the open superstring is shown to imply the supersymmetric Born-Infeld equations of motion for the background fields. These equations are obtained by requiring that the left and right-moving BRST currents are equal on the worldsheet boundary in the presence of the background. The Born-Infeld equations are expressed in N = 1 D = 10 superspace and include all abelian contributions to the low-energy equations of motion, as well as the leading non-abelian contributions. © SISSA/ISAS 2003.
Resumo:
The condition for the global minimum of the vacuum energy for a non-Abelian gauge theory with a dynamically generated gauge boson mass scale which implies the existence of a nontrivial IR fixed point of the theory was shown. Thus, this vacuum energy depends on the dynamical masses through the nonperturbative propagators of the theory. The results show that the freezing of the QCD coupling constant observed in the calculations can be a natural consequence of the onset of a gluon mass scale, giving strong support to their claim.
Resumo:
It is proven that the classical pure spinor superstring in an AdS 5 × S5 back-ground has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et al. for the classical Green-Schwarz superstring. © SISSA/ISAS 2004.
Resumo:
It is shown that the pure spinor formulation of the heterotic superstring in a generic gravitational and super Yang-Mills background has vanishing one-loop beta functions. © SISSA/ISAS 2004.
Resumo:
A ten-dimensional super-Poincaré covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and and to construct a suitable b ghost. A super-Poincaré covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N < 4, confirming the perturbative finiteness of superstring theory. One can also prove the Type IIB S-duality conjecture that R4 terms in the effective action receive no perturbative contributions above one loop. © SISSA/ISAS 2004.
Resumo:
Hughston has shown that projective pure spinors can be used to construct massless solutions in higher dimensions, generalizing the four-dimensional twistor transform of Penrose. In any even (euclidean) dimension d = 2n, projective pure spinors parameterize the coset space SO(2n)/U(n), which is the space of all complex structures on ℝ2n. For d = 4 and d = 6, these spaces are ℂℙ1 and ℂℙ3 and the appropriate twistor transforms can easily be constructed. In this paper, we show how to construct the twistor transform for d > 6 when the pure spinor satisfies nonlinear constraints, and present explicit formulas for solutions of the massless field equations. © SISSA/ISAS 2005.
Resumo:
Although it is not known how to covariantly quantize the Green-Schwarz (GS) superstring, there exists a semi-light-cone gauge choice in which the GS superstring can be quantized in a conformally invariant manner. In this paper, we prove that BRST quantization of the GS superstring in semi-light-cone gauge is equivalent to BRST quantization using the pure spinor formalism for the superstring © SISSA/ISAS 2005.
Resumo:
Spinodal decomposition in a model of pure-gauge SU(2) theory that incorporates a deconfinement phase transition is investigated by means of real-time lattice simulations of the fully nonlinear Ginzburg-Landau equation. Results are compared with a Glauber dynamical evolution using Monte Carlo simulations of pure-gauge lattice QCD. © 2005 American Institute of Physics.
Resumo:
Objectives: The purpose of the this study was to evaluate the influence of thermocycling on shear bond strength on bovine enamel and dentin surfaces of different adhesive systems. Methods: Thirty sound bovine incisors were sectioned in mesiodistal and inciso-cervical direction obtaining 60 incisal surfaces (enamel) and 60 cervical surfaces (dentin). Specimens were randomly assigned to 3 groups of equal size (n = 40), according to the adhesive system used: I-Single Bond; II-Prime & Bond NT/NRC; III-One Coat Bond. After 24-h storage in distilled water at 37 o C, each main group was divided into two subgroups: A- specimens tested after 24 h storage in distilled water at 37°C; B - specimens submitted to thermocycling (500 cycles). Shear bond strength tests were performed. Data were submitted to ANOVA and Tukey test. Results: Means (MPa) of different groups were: I-AE-16.96, AD-17.46; BE-21.60, BD-12.79; II-AE-17.20, AD-11.93; BE-20.67, BD-13.94; III-AE-25.66, AD-17.53; BE-24.20, BD-19.38. Significance: Thermocycling did not influence significantly the shear bond strength of the tested adhesive systems; enamel was the dental substrate that showed larger adhesive strength; One Coat Bond system showed the best adhesive strength averages regardless of substrate or thermocycling. © 2005 Springer Science + Business Media, Inc.