981 resultados para protein tyrosine phosphatase N22


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modulation of signalling pathways can trigger different cellular responses, including differences in cell fate. This modulation can be achieved by controlling the pathway activity with great precision to ensure robustness and reproducibility of the specification of cell fate. The development of the photoreceptor R7 in the Drosophila melanogasterretina has become a model in which to investigate the control of cell signalling. During R7 specification, a burst of Ras small GTPase (Ras) and mitogen-activated protein kinase (MAPK) controlled by Sevenless receptor tyrosine kinase (Sev) is required. Several cells in each ommatidium express sev. However, the spatiotemporal expression of the boss ligand and the action of negative regulators of the Sev pathway will restrict the R7 fate to a single cell. The Drosophila suppressor of cytokine signalling 36E (SOCS36E) protein contains an SH2 domain and acts as a Sev signalling attenuator. By contrast, downstream of receptor kinase (Drk), the fly homolog of the mammalian Grb2 adaptor protein, which also contains an SH2 domain, acts as a positive activator of the pathway. Here, we apply the Förster resonance energy transfer (FRET) assay to transfected Drosophila S2 cells and demonstrate that Sev binds directly to either the suppressor protein SOCS36E or the adaptor protein Drk. We propose a mechanistic model in which the competition between these two proteins for binding to the same docking site results in either attenuation of the Sev transduction in cells that should not develop R7 photoreceptors or amplification of the Ras-MAPK signal only in the R7 precursor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a multifunctional protein with defined functions in numerous mammalian cellular processes. GAPDH functional diversity depends on various factors such as covalent modifications, subcellular localization, oligomeric state and intracellular concentration of substrates or ligands, as well as protein-protein interactions. In bacteria, alternative GAPDH functions have been associated with its extracellular location in pathogens or probiotics. In this study, new intracellular functions of E. coli GAPDH were investigated following a proteomic approach aimed at identifying interacting partners using in vivo formaldehyde cross-linking followed by mass spectrometry. The identified proteins were involved in metabolic processes, protein synthesis and folding or DNA repair. Some interacting proteins were also identified in immunopurification experiments in the absence of cross-linking. Pull-down experiments and overlay immunoblotting were performed to further characterize the interaction with phosphoglycolate phosphatase (Gph). This enzyme is involved in the metabolism of 2-phosphoglycolate formed in the DNA repair of 3"-phosphoglycolate ends generated by bleomycin damage. We show that interaction between Gph and GAPDH increases in cells challenged with bleomycin, suggesting involvement of GAPDH in cellular processes linked to DNA repair mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glyphosate is an herbicide that inhibits the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs) (EC 2.5.1.19). EPSPs is the sixth enzyme of the shikimate pathway, by which plants synthesize the aromatic amino acids phenylalanine, tyrosine, and tryptophan and many compounds used in secondary metabolism pathways. About fifteen years ago it was hypothesized that it was unlikely weeds would evolve resistance to this herbicide because of the limited degree of glyphosate metabolism observed in plants, the low resistance level attained to EPSPs gene overexpression, and because of the lower fitness in plants with an altered EPSPs enzyme. However, today 20 weed species have been described with glyphosate resistant biotypes that are found in all five continents of the world and exploit several different resistant mechanisms. The survival and adaptation of these glyphosate resistant weeds are related toresistance mechanisms that occur in plants selected through the intense selection pressure from repeated and exclusive use of glyphosate as the only control measure. In this paper the physiological, biochemical, and genetic basis of glyphosate resistance mechanisms in weed species are reviewed and a novel and innovative theory that integrates all the mechanisms of non-target site glyphosate resistance in plants is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie), appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc) and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

8-Methoxy psoralen (8-MOP) exerts a short-term (24 h) mitogenic action, and a long-term (48-72 h) anti-proliferative and melanogenic action on two human melanoma cell lines, SK-Mel 28 and C32TG. An increase of intracellular calcium concentration was observed by spectrofluorometry immediately after the addition of 0.1 mM 8-MOP to both cell lines, previously incubated with calcium probe fluo-3 AM (5 µM). The intracellular Ca2+ chelator BAPTA/AM (1 µM) blocked both early (mitogenic) and late (anti-proliferative and melanogenic) 8-MOP effects on both cell lines, thus revealing the importance of the calcium signal in both short- and long-term 8-MOP-evoked responses. Long-term biological assays with 5 and 10 mM tetraethylammonium chloride (TEA, an inhibitor of Ca2+-dependent K+ channels) did not affect the responses to psoralen; however, in 24-h assays 10 mM TEA blocked the proliferative peak, indicating a modulation of Ca2+-dependent K+ channels by 8-MOP. No alteration of cAMP basal levels or forskolin-stimulated cAMP levels was promoted by 8-MOP in SK-Mel 28 cells, as determined by radioimmunoassay. However, in C32TG cells forskolin-stimulated cAMP levels were further increased in the presence of 8-MOP. In addition, assays with 1 µM protein kinase C and calcium/calmodulin-dependent kinase inhibitors, Ro 31-8220 and KN-93, respectively, excluded the participation of these kinases in the responses evoked by 8-MOP. Western blot with antibodies anti-phosphotyrosine indicated a 92% increase of the phosphorylated state of a 43-kDa band, suggesting that the phosphorylation of this protein is a component of the cascade that leads to the increase of tyrosinase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (·NO) is a diffusible messenger implicated in Trypanosoma cruzi resistance. Excess production of ·NO and oxidants leads to the generation of nitrogen dioxide (·NO2), a strong nitrating agent. Tyrosine nitration is a post-translational modification resulting from the addition of a nitro (-NO2) group to the ortho-position of tyrosine residues. Detection of protein 3-nitrotyrosine is regarded as a marker of nitro-oxidative stress and is observed in inflammatory processes. The formation and role of nitrating species in the control and myocardiopathy of T. cruzi infection remain to be studied. We investigated the levels of ·NO and protein 3-nitrotyrosine in the plasma of C3H and BALB/c mice and pharmacologically modulated their production during the acute phase of T. cruzi infection. We also looked for protein 3-nitrotyrosine in the hearts of infected animals. Our results demonstrated that C3H animals produced higher amounts of ·NO than BALB/c mice, but their generation of peroxynitrite was not proportionally enhanced and they had higher parasitemias. While N G-nitro-arginine methyl ester treatment abolished ·NO production and drastically augmented the parasitism, mercaptoethylguanidine and guanido-ethyl disulfide, at doses that moderately reduced the ·NO and 3-nitrotyrosine levels, paradoxically diminished the parasitemia in both strains. Nitrated proteins were also demonstrated in myocardial cells of infected mice. These data suggest that the control of T. cruzi infection depends not only on the capacity to produce ·NO, but also on its metabolic fate, including the generation of nitrating species that may constitute an important element in parasite resistance and collateral myocardial damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkaline phosphatase (ALP) is important in calcification and its expression seems to be associated with the inflammatory process. We investigated the in vitro acute effects of compounds used for the prevention or treatment of cardiovascular diseases on total ALP activity from male Wistar rat heart homogenate. ALP activity was determined by quantifying, at 410 nm, the p-nitrophenol released from p-nitrophenylphosphate (substrate in Tris buffer, pH 10.4). Using specific inhibitors of ALP activity and the reverse transcription-polymerase chain reaction, we showed that the rat heart had high ALP activity (31.73 ± 3.43 nmol p-nitrophenol·mg protein-1·min-1): mainly tissue-nonspecific ALP but also tissue-specific intestinal ALP type II. Both ALP isoenzymes presented myocardial localization (striated pattern) by immunofluorescence. ALP was inhibited a) strongly by 0.5 mM levamisole, 2 mM theophylline and 2 mM aspirin (91, 77 and 84%, respectively) and b) less strongly by 2 mM L-phenylalanine, 100 mL polyphenol-rich beverages and 0.5 mM progesterone (24, 21 to 29 and 11%, respectively). β-estradiol and caffeine (0.5 and 2 mM) had no effect; 0.5 mM simvastatin and 2 mM atenolol activated ALP (32 and 36%, respectively). Propranolol (2 mM) tended to activate ALP activity and corticosterone activated (18%) and inhibited (13%) (0.5 and 2 mM, respectively). We report, for the first time, that the rat heart expresses intestinal ALP type II and has high total ALP activity. ALP activity was inhibited by compounds used in the prevention of cardiovascular pathology. ALP manipulation in vivo may constitute an additional target for intervention in cardiovascular diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in Bruton's tyrosine kinase (BTK) gene are responsible for X-linked agammaglobulinemia (XLA), which is characterized by recurrent bacterial infections, profound hypogammaglobulinemia, and decreased numbers of mature B cells in peripheral blood. We evaluated 5 male Brazilian patients, ranging from 3 to 10 years of age, from unrelated families, whose diagnosis was based on recurrent infections, markedly reduced levels of IgM, IgG and IgA, and circulating B cell numbers <2%. BTK gene analysis was carried out using PCR-SSCP followed by sequencing. We detected three novel (Ala347fsX55, I355T, and Thr324fsX24) and two previously reported mutations (Q196X and E441X). Flow cytometry revealed a reduced expression of BTK protein in patients and a mosaic pattern of BTK expression was obtained from mothers, indicating that they were XLA carriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) have been shown to exhibit a synergistic effect to promote bone repair and healing. In this study, we constructed a novel adenovirus with high coexpression of BMP2 and bFGF and evaluated its effect on osteogenic differentiation of goat bone marrow progenitor cells (BMPCs). Recombinant adenovirus Ad-BMP2-bFGF was constructed by using the T2A sequence. BMPCs were isolated from goats by density gradient centrifugation and adherent cell culture, and were then infected with Ad-BMP2-bFGF or Ad-BMP2. Expression of BMP2 and bFGF was detected by ELISA, and alkaline phosphatase (ALP) activity was detected by an ALP assay kit. In addition, von Kossa staining and immunocytochemical staining of collagen II were performed on BMPCs 21 days after infection. There was a high coexpression of BMP2 and bFGF in BMPCs infected with Ad-BMP2-bFGF. Twenty-one days after infection, ALP activity was significantly higher in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. Larger and more mineralized calcium nodules, as well as stronger collagen II staining, were observed in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. In summary, we developed a novel adenovirus vector Ad-BMP2-bFGF for simultaneous high coexpression of BMP2 and bFGF, which could induce BMPCs to differentiate efficiently into osteoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.