950 resultados para propriedades magnéticas
Resumo:
Effect of extrusion parameters was studied on the expansion index, specific volume, water absorption index (WAI) and water solubility index (WSI) of expanded yam snacks. The central composite design was used to study the parameters effect. It was verified three levels of temperature in the barrel (100, 115 and 130°C), three levels of screw speed (163, 204 and 245 rpm) and three levels of flour moisture (12, 15 and 18%). The results showed that expansion properties (expansion index and specific volume) depend on flour moisture and extrusion temperature. The WSI was dependant of three parameters. Higher levels of temperature and screw speed increase the water solubility index (WSI). The studied parameters did not influence the water absorption index (WAI).
Resumo:
The conventional system for soil management and preparation has the intensive mechanization as its basic principle and that changes soil properties, especially physical ones, faster and significantly. This study aimed to obtain and compare physical properties such as distribution of particle sizes, density, distribution of pore sizes, curves of water retention and degradation index of a Red Latosol, under intensive cultivation and no-cultivation for six years. Soil samples were collected at depths of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 m. There was a clay increment as a result of cultivated soil increase. The no-till soil density decreased as depth increased; however, in the arable layer (0.3 m) of the cultivated soil, the opposite was verified. The largest volume of pores was verified in the cultivated soil, especially in the superficial layers. In the smallest applied tension (0.001 MPa), the cultivated soil retained more water; however, starting from 0.033 MPa, the highest humidity values occurred in the no-till soil. The highest degradation index was observed at a depth of 0.1 m in no-till soil. However, that value was superior (0.020) to what is physically considered very poor soil.
Resumo:
ASTM F 138 austenitic stainless steel is extensively used as an orthopedic implant material. However, some aspects, such as low strength in the annealed condition and susceptibility to localized corrosion, limit wider use of this kind of steel. Recently, a high-nitrogen austenitic stainless steel, specified in the standard ISO 5832-9, has been indicated as an alternative to ASTM F 138 steel for more severe loading and permanent application inside the human body. In this work, microstructure, mechanical properties, corrosion resistance and fatigue behavior of both steels were determined and compared. ISO 5832-9 steel displayed better mechanical and corrosion behaviors than did ASTM F 138 steel The combination of these features lead ISO steel to enhanced fatigue performance in both neutral and aggressive environments. Analyzed were the role of nitrogen in solid solution, combined with niobium in the Z-phase, and the factors that led to superior ISO 5832-9 properties.
Resumo:
The aim of this work was to evaluate the effect of a millet-soybean rotation, during the implantation phase of no-tillage system on the physical properties of a Nitossolo Vermelho distroférrico and the dry mass production of millet and the productivity of soybean. The experimental design used was a randomized blocks, in a split splot arrangement, with four replications. The parcels was constituted by three sowings (E1, E2 and E3) and the subparcels was constituted by harvests, where each harvest handling was: M1 - harvest each blooming and covering withdrawal; M2 - harvest each blooming and covering permanency; M3 - only in the first harvest on blooming and covering withdrawal; M4 - only in the first harvest on blooming and covering permanency, and M5-free growing, with no harvest. Samples were collected from three soil layers: 0-0,05, 0,05-0,10 and 0,10-0,20 m. The E2 showed smaller values of soil density and larger values of total porosity. The E3 resulted in smaller values of flocculation degree and mean weight diameter of the aggregates. The E3 showed smaller production of dry mass.
Resumo:
Background: Many studies have shown that physical exercises are able to stimulate bone formation and increase bone mass, constituting a therapeutic modality to treat bone loss due to osteoporosis. However, some points about the intensity, duration and frequency of the exercises remain confusing and contradictory. Thus, the aim of this study was to determine the effects of a progressive loading exercise program on femur of osteopenic rats. To induce osteopenia we used the animal model of ovariectomy (OVX). Forty animals was studied and divided into 4 groups: sham-operated sedentary (SS); ovariectomy-sedentary (OS); sham-operated training (ST) and ovariectomy training (OT). The trained groups performed jumps into water: 4 series of 10 jumps each, with an overload of 50% to 80% of the animal's body weight, during 8 weeks. Femora were submitted to a physical properties evaluation, a biomechanical test, calcium and phosphorus content measurement and a morphometric histological evaluation. Results: osteopenic animals showed a decrease of bone strength and lower values of bone weights, bone density and calcium content. The exercised osteopenic rats showed higher values of geometrical, physical properties, bone strength and calcium content compared to controls. The results of the present study indicate that the progressive loading exercise program had stimulatory effects on femora of osteopenic rats. It seems that the intensity and duration of the protocol used produced bone structural adaptations, which contributed to reverse bone loss due to ovariectomy.
Resumo:
The compaction behavior of powdered solids used in tablets can be dominated by the physical-chemical properties of the excipients because, frequently, they are present in much larger amounts than the drug in tablet formulation. The aim of this study was to evaluate the influence of the size of lactose granules on the physical characteristics of tablets produced in punches of various diameters, since this relation has not been explored in the literature. Granules were produced in several sizes by wet granulation and compressed in punches of different diameters by applying different forces. Size distribution, apparent density and flow of granules were evaluated, as well as the physical characteristics of the tablets (weight, friability, hardness and disintegration time). The results indicate that in situations where excipient characteristics predominate due to low drug content, as in the 7 mm punch, the selection of granule size is important for the mechanical strength of tablet. On the other hand, with the 9, 11 and 13mm punches, it was possible to produce strong tablet from all sizes of granules.
Resumo:
The pressure caused by agricultural machinery traffic many result in soil compactation in no-tillage system. The aim of this work was to evaluate no-tillage system onset,time on some physical properties, index S and organic matter (OM) of an oxysol located in Jaboticabal, Sao Paulo State, Brazil. The experiment had completely randomized split-splot design. The treatments consisted of four no-tillage systems: no-tillage for 2 years, no-tillage for 4 years, no-tillage for 6 years and one natural wooded area. The evaluated layers were: Q-0.10m, 0.10-0.20m and 0.20-030m. The following were determined: soil porosity, soil aggregates, bulk density, index S and organic matter. The results were submitted to variance analysis and when there was a difference between averages, Tukey's test was used to compare them. The natural wooded area showed higher organic matter, macroporosity, hydraulic conductivity and Index S. There was no difference between the studied parameters, showing that the no-tillage system for six years was not enough to change the soil physical property.
Resumo:
The compaction behavior of powdered solids can be strongly influenced by the physicochemical properties of excipients because they are frequently present in the tablet in larger amounts than the drug itself. The aim of this study was to assess the influence of the granule size of the cellulose on the physical characteristics of tablets produced in punches of different diameters, since this relation has never been explored in the literature. Granules of several sizes were produced by wet granulation and compressed in punches of various diameters by applying different forces. Size distribution, apparent density and flow of granules were assessed, as well as physical characteristics of the tablets (weight, hardness, friability and disintegration time). Reducing the granule size resulted in tablets of adequate crushing strength and fast disintegration; moreover, it allowed tablets to be produced without the need to use forces near the upper limit of the press, thus avoiding premature wear on the tabletting machine. Thus, once a suitable size for a given tablet formulation has been chosen, the granule size selected has been shown to determine the crushing strength of the tablet.
Resumo:
The behaviour of the non conserved and 98% glycerin conserved specimens for periods of 30, 60 and 90 days of bovine diaphragma's tendinous center, fibrous pericardium and parietal peritoneum submitted to mechanical tests of traction, was observed in ten bovines between 30 months and 36 months of age, crossbreeds, males and females, collecting fragments of these aforesaid membranes in each animal. The diaphragma's tendinous center and parietal peritoneum did not suffered significant modification (p>0.05) in the values of tension when compared to the resistance tests of traction of non conserved and 98% glycerin conserved membranes. However, all the evaluated tissues showed significant increase (p£0.05) of the elongation values when conserved in 98% glycerin for until 90 days. It was also observed that fibrous pericardium is the one which supports greaters tensions. So, it to was concluded, that glycerin is efficient to the conservation of biological membranes besides modifying its mechanical properties.
Resumo:
The high rate of mineralization of organic matter on savannah soils, which is reached fi ve times faster than in temperate regions, leads us to the challenge of electing the best system of management that maintains and/or increase it in soil, guaranteeing its quality and sustainability. In this sense the present research aimed to study the effects of green, organic and mineral manure on the chemical properties on the chemical properties of an Oxisol, on Savannah area, cultivated with cotton (Gossypium hirsutum) under conventional tillage and no-tillage in the pasture fi eld (Brachiaria decumbens) for 20 years. The experimental design was a randomized block design with split plots. The main plots consisted of two treatments: conventional tillage and no-tillage, and the subplots of six treatments: control (no fertilizer), mineral fertilizer recommended for the crop, according to the soil chemical analysis, organic fertilizer (cattle manure - 20 t ha-1), organic fertilizer (cattle manure - 20 t ha-1) + 1/2mineral fertilization recommended according to the analysis of soil, green manure-1 (Crotalaria juncea) and green manure-2 (Pennisetum americanum). There were studied the following soil chemical properties: P, OM, pH, K, Ca, Mg, Al, Al + H, S, exchange capacity cations and base saturation. The soil samples for the analysis were performed on layers of 0,00-0,05 m, 0,05-0,10 and 0,10-0,20 m. Then it came the following conclusions: the fertilization interfere in soil chemical properties and the preparation did not interfere, the cattle manure and its association with the mineral fertilizer caused increasing level elements in the soil, Crotalaria juncea and Pennisetum americanum did not infl uence on soil chemical properties.
Resumo:
The intensive use of the land for agricultural propose causes a series of modifications in attributes, which can take to soil degradation. In this context, the main goal of this research was to evaluate the influence of the soil tillage systems and management on its physical and hydric characteristics. The evaluations were carried out in July of 1999, at experimental plots of a Latossolo vermelho, a clay oxisoil, in the Faculdade de Engenharia Agrícola of the UNICAMP, at the county of Campinas, state of São Paulo. These plots were managed with the following treatments, along a period of eight years: no-tillage, chisel ploughing, conventional system with disk ploughing and revolving hoe. The evaluated physical and hydric parameters of the soil were: soil bulk density, particle density, total porosity, macro-porosity, micro-porosity, soil-water retention curve, hydraulic conductivity and basic infiltration. Significant differences were observed between the treatments on soil bulk density, infiltration, total porosity, macro-porosity and the micro-porosity. The chisel ploughing and no-tillage systems presented the higher values of soil bulk density; nevertheless in these conservationist systems were observed the higher values of basic infiltration.
Resumo:
The oxygenation of human Hb (HbA) demands a three state model: two deoxy states To and Tx, free and complexed with anions respectively, and an oxy R state. The regulation between these states is modulated by the presence of anions, such as chloride, that binds to T state. The b inding if chloride, however, remains controversial. The aim of this work is the study of arginines 92a (a1ß2 interface) and 141a (C-terminal) as chloride binding sites. To investigate that, we have studied 92 and 141 site directed mutant species: natural mutants Hb J-Cape-Town (R92Q), desArg (R141Δ), Chesapeake (R92L), and the constructed Chesapeake desArg (R92L,141Δ). We expressed Hbs in Escherichia coli and purified. Through oxygen binding curves we measured affinity and cooperativity, in function of water effect and Bohr effect in presence and absence of chloride. Structural features were obtained through 1H NMR spectroscopy Oxygen binding properties and Bohr effect measured indicated a higher affinity and lower cooperativity in absence and presence of chloride for all mutants. Structural changes represent functional aspects of mutant Hbs, such as a significant rise in affinity or a change in cooperativity. Water activity studies conducted as a function of chloride concentration showed that the only Hb desArg follows the thre state model. The other mutant Hbs do not exhibit the Tx state, a fact confirmed by the number of water molecules bound to each Hb during the deoxy-oxy transition. This behavior suggests that the Arginine 92 site could be responsible for chloride binding to Hb, since oxygenation of 92 mutant Hbs cannot be adjusted by the three state model. However, Bohr effect showed that all mutant Hbs released~1 proton in chloride presence, different from HbA that releases ~2, suggesting a role for 141 arginine in the tertiary and quaternary Bohr effect.
Resumo:
The objective of this research is to assess the influences of basal canker on wood properties for the kraft pulp production. The material consisted of seeded E. grandis trees classified into 4 levels of basal canker severity (0, 1, 2 and 3) and installed in three soil types classified by texture (AQ1 and AQ2 - 10 to 15% clay, and LEm2 - 26 to 35 clay). The sampling consisted of randomly selecting five trees for each for each canker severity level and soil type, totaling 60 trees (4 canker levels x 3 soil types x 5 trees). These trees were fallen and cut into sections at 0, 25, 50, 75 and 100% of the commercial height for the collection of disk and logs of wood. The results showed that the soil texture influences in the Eucalyptus canker severity and this fact should be considered when assessing the wood properties and their final destination. The texture of the soil and the severe levels of basal canker influence the wood properties, and therefore the kraft pulping.
Resumo:
The rapid growth of agriculture, promoted by public government initiatives, favored an out of control deforestation of our forests; today, reforestation of permanent preservation areas are necessary for the conservation of our natural resources, and recovery of such areas are required by public laws. In an area of 5.26 acres of riparian reforestation in the savanna soil chemical properties were evaluated after twenty years of planting. It was analyzed the following variables: (P, organic matter (MO), pH, K, Ca, Mg, H+Al, Al and S) in 13 modules, with three replicas in two depths (0 - 20 and 20 - 40 cm) in a randomized block design in hierarchical scheme. Reforestation with tree species on the edge of Parana river in Selvíria (MS) contributes to chemical soil attributes, under riparian reforestation, as similar as a soil without human disturbance in this region; it is also possible to verify that forestry plantation promotes deposition of organic material which is essential for nutrient cycling, which keep the chemical properties of such soil in good condition for the establishment of riparian vegetation.
Resumo:
The soybean culture is part of crop rotation used by irrigators from the southwestern region of São Paulo State that perform no-tillage soil management as a form of sustainable soil use. The objective of this work was to evaluate the effect of this conservationist practice on physicalhydric properties, soil compaction, root development, and soybean culture production components in relation to the conventional management. The experiment was conducted at the Buriti-Mirim Farm, Angatuba, SP, in Brazil, using an area irrigated by a center pivot system divided into two types of soil management: conventional and no-tillage. Although the no-tillage management presented higher soil density, lower water available and lower soil resistance to penetration, both soil managements showed no difference in relation to root development.