992 resultados para production index
Resumo:
Chlorophyll determination with a portable chlorophyll meter can indicate the period of highest N demand of plants and whether sidedressing is required or not. In this sense, defining the optimal timing of N application to common bean is fundamental to increase N use efficiency, increase yields and reduce the cost of fertilization. The objectives of this study were to evaluate the efficiency of N sufficiency index (NSI) calculated based on the relative chlorophyll index (RCI) in leaves, measured with a portable chlorophyll meter, as an indicator of time of N sidedressing fertilization and to verify which NSI (90 and 95 %) value is the most appropriate to indicate the moment of N fertilization of common bean cultivar Perola. The experiment was carried out in the rainy and dry growing seasons of the agricultural year 2009/10 on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block design with five treatments, consisting of N managements (M1: 200 kg ha-1 N (40 kg at sowing + 80 kg 15 days after emergence (DAE) + 80 kg 30 DAE); M2: 100 kg ha-1 N (20 kg at sowing + 40 kg 15 DAE + 40 kg 30 DAE); M3: 20 kg ha-1 N at sowing + 30 kg ha-1 when chlorophyll meter readings indicated NSI < 95 %; M4: 20 kg ha-1 N at sowing + 30 kg ha-1 N when chlorophyll meter readings indicated NSI < 90 % and, M5: control (without N application)) and four replications. The variables RCI, aboveground dry matter, total leaf N concentration, production components, grain yield, relative yield, and N use efficiency were evaluated. The RCI correlated with leaf N concentrations. By monitoring the RCI with the chlorophyll meter, the period of N sidedressing of common bean could be defined, improving N use efficiency and avoiding unnecessary N supply to common bean. The NSI 90 % of the reference area was more efficient to define the moment of N sidedressing of common bean, to increase N use efficiency.
Resumo:
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.
Resumo:
The objective of the investigation was the development of a test that would readily identify the potential of an aggregate to cause D-cracking because of its susceptivity to critical saturation. A Press-Ur-Meter was modified by replacing the air chamber with a one-inch diameter plastic tube calibrated in milli-. It was concluded that the pore index was sufficiently reliable to determine the D-cracking potential of limestone aggregates in all but a few cases where marginal results were obtained. Consistently poor or good results were always in agreement with established service records or concrete durability testing. In those instances where marginal results are obtained, the results of concrete durability testing should be considered when making the final determination of the D-cracking susceptibility of the aggregate in question. The following applications for the pore index test have been recommended for consideration: concrete durability testing be discontinued in the evaluation process of new aggregate sources with pore index results between 0-20 (Class 2 durability) and over 35 (Class 1) durability; composite aggregates with intermediate pore index results of 20-35 be tested on each stone type to facilitate the possible removal of low durability stone from the production process; and additional investigation should be made to evaluate the possibility of using the test to monitor and upgrade the acceptance of aggregate from sources associated with D-cracking.
Resumo:
The objective of this work was to develop and validate linear regression models to estimate the production of dry matter by Tanzania grass (Megathyrsus maximus, cultivar Tanzania) as a function of agrometeorological variables. For this purpose, data on the growth of this forage grass from 2000 to 2005, under dry‑field conditions in São Carlos, SP, Brazil, were correlated to the following climatic parameters: minimum and mean temperatures, degree‑days, and potential and actual evapotranspiration. Simple linear regressions were performed between agrometeorological variables (independent) and the dry matter accumulation rate (dependent). The estimates were validated with independent data obtained in São Carlos and Piracicaba, SP, Brazil. The best statistical results in the development and validation of the models were obtained with the agrometeorological parameters that consider thermal and water availability effects together, such as actual evapotranspiration, accumulation of degree‑days corrected by water availability, and the climatic growth index, based on average temperature, solar radiation, and water availability. These variables can be used in simulations and models to predict the production of Tanzania grass.
Resumo:
The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1') ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.
Resumo:
The objective of this work was to evaluate the production of flour using by-products (cephalothorax) obtained from the shrimp (Litopenaeus vannamei) industry, and to perform a sensory analysis of shrimp flour-based products. Physicochemical and microbiological analyses on fresh cephalothorax and on manufactured flour were performed, as well as the determination of cholesterol content of this flour, and the sensorial evaluation of soup and pastry made with this flour. By the microbiological analyses, no pathogenic microorganism was detected in the samples. Physicochemical analyses of flour showed high levels of protein (50.05%) and minerals (20.97%). Shrimp cephalothorax flour showed high levels of cholesterol. The sensory evaluation indicated a good acceptance of the products, with satisfactory acceptability index (81% for soup, and 83% for pastry), which indicates that shrimp cephalothorax in the form of flour has a potential for developing new products.
Resumo:
The tropical north region of Minas Gerais State is one of the least developed of Brazil and viticulture could be an alternative to develop its agriculture zone. The objective of this work was to evaluate the climatic potential of that region for wine grape production. The evaluations were carried out applying the Multicriteria Climatic Classification System (Geoviticulture MCC System), that utilizes three reference climatic indexes (Dryness Index - DI, Heliothermal Index - HI and Cool Night Index - CI). Three locations - Pirapora (17º 21'S, 44º56'W, 489m), Montes Claros (16º43'S, 43º52'W, 647m) and Diamantina (18º15'S, 43º36'W, 1297m) - and two potential production cycles along the year - October to March (spring-summer period) and April to September (autumn-winter period) - were evaluated. The results showed that in the spring-summer period (SS period) Pirapora and Montes Claros presented a 'humid, very warm and with warm nights' of viticultural climate, according to MCC System. For the autumn-winter period (AW period), those two regions presented a 'moderately dry, warm and with temperate nights' according to MCC System. Otherwise, the Diamantina SS period presented a 'humid, temperate warm and with temperate nights' viticultural climate. In the AW period, the Diamantina climatic condition values represent a 'subhumid, temperate and with cool nights' viticultural climate. Based on those results it can be concluded that the North Region of Minas Gerais State has a great climatic potential to became a grape-growing region for wine-making, specially in the autumn-winter period.
Resumo:
The aim of this study was to estimate the production cost and economic indicators associated with the production and sales of fruits from 20 custard apple progenies during the initial five harvests, in order to identify the harvest season from which custard apple exploitation becomes profitable, as well as the most promising progenies from an economic point of view. The fruit yield data upon which the present work was based were obtained during the period from 2001 to 2005, in an experiment that evaluated 20 custard apple half-sibling progenies, under sprinkler irrigation. The progenies were evaluated in a random block design with five replicates and plots consisting of four plants each. The exploitation of custard apple progenies only showed to be a profitable agribusiness after the fourth year. Before that, only A3 and A4 progenies in the second year, and P3 and P11 in the third year provided profitable incomes. Considering the methodological assumptions imposed concerning the time period analysis and the prices as of July 2007, the most important profitability indicators (operating profit, return index and equilibrium price) evidenced that the A4 progeny is the most recommended, although other progenies are also highlighted, such as FJ1 and FJ2. As already discussed, the progenies showing the highest average yields of five harvests are not always the most economically recommendable ones.
Resumo:
In this paper we propose a latent variable model, in the spirit of Israilevich and Kuttner (1993), to measure regional manufacturing production. To test the validity of the proposed methodology, we have applied it for those Spanish regions that have a direct quantitative index. The results demonstrate the accuracy of the methodology proposed and show that it can overcome some of the difficulties of the indirect method applied by the INE, the Spanish National Institute of Statistics.
Resumo:
ABSTRACTThe objective of this study was to test the hypothesis that biochar, applied with cattle manure, promotes better development of seedlings of Magonia pubescens St. Hil. The experiment was conducted at the State University of Mato Grosso, Nova Xavantina, Brazil, in 2011. We used a completely randomized design, with twelve treatments and three replications. The substrates formed by the higher levels of cattle manure plus biochar (30%) provided better results of height, diameter and aerial biomass. However, the Dickson Quality Index has not confirmed the quality of seedlings in these treatments. We also observed that the doses of biochar (20 and 30%) when added separately to the Latosol, are not efficient for the growth improvement of the seedlings. Based on the present results, we validate the hypothesis that substrates formed with a mixture of cattle manure and biochar are effective to improve the production of seedlings of M. pubescens.
Resumo:
ABSTRACT Inventory and prediction of cork harvest over time and space is important to forest managers who must plan and organize harvest logistics (transport, storage, etc.). Common field inventory methods including the stem density, diameter and height structure are costly and generally point (plot) based. Furthermore, the irregular horizontal structure of cork oak stands makes it difficult, if not impossible, to interpolate between points. We propose a new method to estimate cork production using digital multispectral aerial imagery. We study the spectral response of individual trees in visible and near infrared spectra and then correlate that response with cork production prior to harvest. We use ground measurements of individual trees production to evaluate the model’s predictive capacity. We propose 14 candidate variables to predict cork production based on crown size in combination with different NDVI index derivates. We use Akaike Information Criteria to choose the best among them. The best model is composed of combinations of different NDVI derivates that include red, green, and blue channels. The proposed model is 15% more accurate than a model that includes only a crown projection without any spectral information.
Resumo:
ABSTRACT The present study aimed to evaluate the growth and the levels of N, P, K, Ca and Mg in Australian cedar seedlings which had been inoculated with arbuscular mycorrhizal fungi (AMF) in different types of containers. The experiment was carried out in a greenhouse and the experimental design was that of randomized complete blocks (RCB), with a 4 x 4 factorial design consisting of four inoculation treatments with AMF (Rhizophagus clarum, Gigaspora margarita, a mixed inoculation (R. clarum + G. margarita) and the control (with no AMF inoculation); four types of containers (plastic bags measuring 250 cm3, tubes of 55 and 130 cm3 and pressed blocks 440 cm3. plant-1), with four repetitions. The height, the diameter of the stem base, the aerial part dry weight (APDW), the dry weight of the root (DWR) and the total plant dry weight (DW) were measured, along with the Dickson quality index, the percentage of mycorrhizal colonization and the levels of N, P, K, Ca and Mg in the aerial part dry weight. One hundred and thirty eight days (138) days after sowing, the greatest growth and/or the highest levels of P, K and Ca could be observed in the aerial part dry weight of the Australian cedar seedlings which had been planted in the pressed block container and inoculated with a mixture of the two AMF species (G. margarita + R. clarum) or with just R. clarum. Thus it can be seen that AMF can make a significant contribution to the production of Australian cedar seedlings.
Resumo:
This study aimed to propose methods to identify croplands cultivated with winter cereals in the northern region of Rio Grande do Sul State, Brazil. Thus, temporal profiles of Normalized Difference Vegetation Index (NDVI) from MODIS sensor, from April to December of the 2000 to 2008, were analyzed. Firstly, crop masks were elaborated by subtracting the minimum NDVI image (April to May) from the maximum NDVI image (June to October). Then, an unsupervised classification of NDVI images was carried out (Isodata), considering the crop mask areas. According to the results, crop masks allowed the identification of pixels with greatest green biomass variation. This variation might be associated or not with winter cereals areas established to grain production. The unsupervised classification generated classes in which NDVI temporal profiles were associated with water bodies, pastures, winter cereals for grain production and for soil cover. Temporal NDVI profiles of the class winter cereals for grain production were in agree with crop patterns in the region (developmental stage, management standard and sowing dates). Therefore, unsupervised classification based on crop masks allows distinguishing and monitoring winter cereal crops, which were similar in terms of morphology and phenology.
Resumo:
In the current study, we performed a soybean production spatial distribution analysis in Paraná State. Seven crop-year data, from 2003-04 to 2009-10, obtained from the Paraná Department of Agriculture and Supply (SEAB) were used to develop a Boxmap for each crop-year, show soybean production throughout this time interval. Moran's index was used to measure spatial autocorrelation among municipalities at an aggregate level, while LISA index local correlation. For each index, different contiguity matrix and order were used and there was a significance level study. As a result, we have showed spatial relationship among cities regarding the production, which allowed the indication of high and low production clusters. Finally, identifying main soybean-producing cities, what may provide supply chain members with information to strengthen the crop production in Paraná.
Resumo:
Precision agriculture based on the physical and chemical properties of soil requires dense sampling to determine the spatial variability of these properties. This dense sampling is often expensive and time-consuming. One technique used to reduce sample numbers involves defining management zones based on information collected in the field. Some researchers have demonstrated the importance of soil electrical variables in defining management zones. The objective of this study was to evaluate the relationship between the spatial variability of the apparent electrical conductivity and the soil properties in the coffee production of mountain regions. Spatial variability maps were generated using a geostatistical method. Based on the spatial variability results, a correlation analysis, using bivariate Moran's index, was done to evaluate the relationship between the apparent electrical conductivity and soil properties. The maps of potassium (K) and remaining phosphorus (P-rem) were the closest to the spatial variability pattern of the apparent electrical conductivity.