914 resultados para predictive coding
Resumo:
Cardiovascular diseases are a growing public health problem that affects most people over the age of 65 years and abdominal obesity is one of the risk factors for the development of these diseases. There are several methods that can be used to measure body fat, but their accuracy needs to be evaluated, especially in specific populations such as the elderly. The aim of this study was to assess the accuracy of anthropometric indicators to estimate the percentage of abdominal fat in subjects aged 80 years or older. A total of 125 subjects ranging in age from 80 to 95 years (83.5 ± 3), including 79 women (82.4 ± 3 years) and 46 men (83.6 ± 3 years), were studied. The following anthropometric indicators were used: body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and waist-to-height ratio (WHtR). The percentage of abdominal fat was measured by DEXA. Sensitivity and specificity were analyzed using an ROC curve. The sensitivity, specificity and AUC were 0. 578, 0. 934 and 0. 756 for BMI, respectively; 0.703, 0.820 and 0.761 for WC; 0.938, 0.213 and 0.575 for WHR, and 0.984, 0.344 and 0.664 for WHtR. BMI and WC were the anthropometric indicators with the largest area under the curve and were therefore more adequate to identify the presence or absence of abdominal obesity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Among all predictive maintenance techniques the oil analysis and vibration analysis are the most important for monitoring some mechanical systems. The integration of these techniques has potential to improve industrial maintenance practices and provide a better economic gain for industries. To study the integration of these two techniques, a test rig was set up to obtain an extreme working condition for the worm reducer used in this paper. The test rig was composed by a motor connected to a reducer through a flexible coupling and with an unbalanced load. The analysis of the results carried out by using a sample of the oil recommended by the manufacturer in extreme conditions, and using liquid contaminant is presented. From the results it was observed that if there is an abnormal instantaneous load in a system, the subsequent vibration analysis may not perceive what occurred if there was no permanent damage, which is not the case with the lubricant analysis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background There are limited studies on the prevalence and risk factors associated with hepatitis C virus (HCV) infection. Objective Identify the prevalence and risk factors for HCV infection in university employees of the state of São Paulo, Brazil. Methods Digital serological tests for anti-HCV have been performed in 3153 volunteers. For the application of digital testing was necessary to withdraw a drop of blood through a needlestick. The positive cases were performed for genotyping and RNA. Chi-square and Fisher’s exact test were used, with P-value <0.05 indicating statistical significance. Univariate and multivariate logistic regression were also used. Results Prevalence of anti-HCV was 0.7%. The risk factors associated with HCV infection were: age >40 years, blood transfusion, injectable drugs, inhalable drugs (InDU), injectable Gluconergam®, glass syringes, tattoos, hemodialysis and sexual promiscuity. Age (P=0.01, OR 5.6, CI 1.4 to 22.8), InDU (P<0.0001, OR=96.8, CI 24.1 to 388.2), Gluconergam® (P=0.0009, OR=44.4, CI 4.7 to 412.7) and hemodialysis (P=0.0004, OR=90.1, CI 7.5 – 407.1) were independent predictors. Spatial analysis of the prevalence with socioeconomic indices, Gross Domestic Product and Human Development Index by the geoprocessing technique showed no positive correlation. Conclusions The prevalence of HCV infection was 0.7%. The independent risk factors for HCV infection were age, InDU, Gluconergan® and hemodialysis. There was no spatial correlation of HCV prevalence with local economic factors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
HLA-E is a non-classical Human Leucocyte Antigen class I gene with immunomodulatory properties. Whereas HLA-E expression usually occurs at low levels, it is widely distributed amongst human tissues, has the ability to bind self and non-self antigens and to interact with NK cells and T lymphocytes, being important for immunosurveillance and also for fighting against infections. HLA-E is usually the most conserved locus among all class I genes. However, most of the previous studies evaluating HLA-E variability sequenced only a few exons or genotyped known polymorphisms. Here we report a strategy to evaluate HLA-E variability by next-generation sequencing (NGS) that might be used to other HLA loci and present the HLA-E haplotype diversity considering the segment encoding the entire HLA-E mRNA (including 5'UTR, introns and the 3'UTR) in two African population samples, Susu from Guinea-Conakry and Lobi from Burkina Faso. Our results indicate that (a) the HLA-E gene is indeed conserved, encoding mainly two different protein molecules; (b) Africans do present several unknown HLA-E alleles presenting synonymous mutations; (c) the HLA-E 3'UTR is quite polymorphic and (d) haplotypes in the HLA-E 3'UTR are in close association with HLA-E coding alleles. NGS has proved to be an important tool on data generation for future studies evaluating variability in non-classical MHC genes.
Resumo:
Maximum-likelihood decoding is often the optimal decoding rule one can use, but it is very costly to implement in a general setting. Much effort has therefore been dedicated to find efficient decoding algorithms that either achieve or approximate the error-correcting performance of the maximum-likelihood decoder. This dissertation examines two approaches to this problem. In 2003 Feldman and his collaborators defined the linear programming decoder, which operates by solving a linear programming relaxation of the maximum-likelihood decoding problem. As with many modern decoding algorithms, is possible for the linear programming decoder to output vectors that do not correspond to codewords; such vectors are known as pseudocodewords. In this work, we completely classify the set of linear programming pseudocodewords for the family of cycle codes. For the case of the binary symmetric channel, another approximation of maximum-likelihood decoding was introduced by Omura in 1972. This decoder employs an iterative algorithm whose behavior closely mimics that of the simplex algorithm. We generalize Omura's decoder to operate on any binary-input memoryless channel, thus obtaining a soft-decision decoding algorithm. Further, we prove that the probability of the generalized algorithm returning the maximum-likelihood codeword approaches 1 as the number of iterations goes to infinity.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
Background: Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Methods: Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Results: Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of >= 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). Conclusions: The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.
Resumo:
Background Recurrent nerve injury is 1 of the most important complications of thyroidectomy. During the last decade, nerve monitoring has gained increasing acceptance in several centers as a method to predict and to document nerve function at the end of the operation. We evaluated the efficacy of a nerve monitoring system in a series of patients who underwent thyroidectomy and critically analyzed the negative predictive value (NPV) and positive predictive value (PPV) of the method. Methods. NIM System efficacy was prospectively analyzed in 447 patients who underwent thyroidectomy between 2001 and 2008 (366 female/81 male; 420 white/47 nonwhite; 11 to 82 years of age; median, 43 years old). There were 421 total thyroidectomies and 26 partial thyroidectomies, leading to 868 nerves at risk. The gold standard to evaluate inferior laryngeal nerve function was early postoperative videolaryngoscopy, which was repeated after 4 to 6 months in all patients with abnormal endoscopic findings. Results. At the early evaluation, 858 nerves (98.8%) presented normal videolaryngoscopic features after surgery. Ten paretic/paralyzed nerves (1.2%) were detected (2 unexpected unilateral paresis, 2 unexpected bilateral paresis, 1 unexpected unilateral paralysis, 1 unexpected bilateral paralyses, and 1 expected unilateral paralysis). At the late videolaryngoscopy, only 2 permanent nerve paralyses were noted (0.2%), with an ultimate result of 99.8% functioning nerves. Nerve monitoring showed absent or markedly reduced electrical activity at the end of the operations in 25/868 nerves (2.9%), including all 10 endoscopically compromised nerves, with 15 false-positive results. There were no false-negative results. Therefore, the PPV was 40.0%, and the NPV was 100%. Conclusions. In the present series, nerve monitoring had a very high PPV but a low NPV for the detection of recurrent nerve injury. (C) 2011 Wiley Periodicals, Inc. Head Neck 34: 175-179, 2012
Resumo:
Background. Previous knowledge of cervical lymph node compromise may be crucial to choose the best treatment strategy in oral squamous cell carcinoma (OSCC). Here we propose a set four genes, whose mRNA expression in the primary tumor predicts nodal status in OSCC, excluding tongue. Material and methods. We identified differentially expressed genes in OSCC with and without compromised lymph nodes using Differential Display RT-PCR. Known genes were chosen to be validated by means of Northern blotting or real time RT-PCR (qRT-PCR). Thereafter we constructed a Nodal Index (NI) using discriminant analysis in a learning set of 35 patients, which was further validated in a second independent group of 20 patients. Results. Of the 63 differentially expressed known genes identified comparing three lymph node positive (pN+) and three negative (pN0) primary tumors, 23 were analyzed by Northern analysis or RT-PCR in 49 primary tumors. Six genes confirmed as differentially expressed were used to construct a NI, as the best set predictive of lymph nodal status, with the final result including four genes. The NI was able to correctly classify 32 of 35 patients comprising the learning group (88.6%; p = 0.009). Casein kinase 1alpha1 and scavenger receptor class B, member 2 were found to be up regulated in pN + group in contrast to small proline-rich protein 2B and Ras-GTPase activating protein SH3 domain-binding protein 2 which were upregulated in the pN0 group. We validated further our NI in an independent set of 20 primary tumors, 11 of them pN0 and nine pN+ with an accuracy of 80.0% (p = 0.012). Conclusions. The NI was an independent predictor of compromised lymph nodes, taking into the consideration tumor size and histological grade. The genes identified here that integrate our "Nodal Index" model are predictive of lymph node metastasis in OSCC.