975 resultados para potentials
Resumo:
The trans-[RUCl(2)(L)(4)], trans-[Ru(NO)Cl (L)(4)](PF(6))(2) (L = isonicotinamide and 4-acetylpyridine) and trans-[Ru(NO)(OH)(py)(4)]Cl(2) (py = pyridine) complexes have been prepared and characterized by elemental analysis, UV-visible, infrared, and (1)H NMR spectroscopies, and cyclic voltammetry. The MLCT band energies of trans-[RUCl(2)(L)(4) increase in the order 4-acpy < isn < py. The reduction potentials of trans-[RuCl(2)(L)(4)] and trans-[Ru(NO)Cl(L)(4)](2+) increase in the order py < isn < 4-acpy. The stretching band frequency. v(NO), of the nitrosyl complexes ranges from 1913 to 1852 cm(-1) indicating a nitrosonium character for the NO ligand. Due to the large pi-acceptor ability of the equatorial ligands, the coordinated water is much more acidic in the water soluble trans-[Ru(NO)(H(2)O)(py)(4)](3+) than in trans-[Ru(NO)(H(2)O)(NH(3))(4)](3+) (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.
Resumo:
Electrical or chemical stimulation of the inferior colliculus (IC) induces fear-like behaviors. More recently, consistent evidence has shown that electrical stimulation of the central nucleus of the IC supports Pavlovian conditioning and latent inhibition (Li). LI is characterized by retardation in conditioning and also by an impaired ability to ignore irrelevant stimuli, after a non-reinforced pre-exposure to the conditioned stimulus. LI has been proposed as a behavioral model of cognitive abnormalities seen in schizophrenia. The aim of the present study was to determine whether dopaminergic mechanisms in the IC are involved in LI of the conditioned emotional response (CER). To induce LI, a group of rats was pre-exposed (PE) to six tones in two sessions, while rats that were not pre-exposed (NPE) had two sessions without tone presentations. The conditioning consisted of two tone presentations to the animal, followed immediately by a foot shock. PE and NPE rats received IC microinjections of physiological saline, the dopaminergic agonist apomorphine (9.0 mu g/0.5 mu L/side), or the dopaminergic antagonist haloperidol (0.5 mu g/0.5 mu L/side) before both pre-exposure and conditioning. During the test, the PE rats that received saline or haloperidol had a lower suppression of the licking response compared to NPE rats that received vehicle or haloperidol, indicating that latent inhibition was induced. There was no significant difference in the suppression ratio in rats that received apomorphine injections into the IC, indicating reduced latent inhibition. These results suggest that dopamine-mediated mechanisms of the IC are involved in the development of LI. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, being in a position to send auditory information to motor centers that participate in behaviors such as prey catching and predators` avoidance The role of the central nucleus of the IC (CIC) on fear and anxiety has been suggested on the basis that rats are able to engage in tasks to decrease the aversiveness of CIC stimulation, increased Fos immunolabeling during diverse aversive states and increased CIC auditory evoked potentials (AEP) induced by conditioned fear stimuli Additionally it was shown that brainstem AEP, represented by wave V, for which the main generator is the IC, is increased during experimentally induced anxiety Rats segregated according to their low or high emotional reactivity have been used as an important tool in the study of fear and anxiety The IC contains a high density of GABA receptors Since the efficacy of an anxiolytic compound is a function of the animal`s anxiety level, it is possible that GABA-benzodiazepine (Bzp) agents affect LA and HA animals differently In this study we investigated the GABA-Bzp influence on the modulation of AEP in rats with low (LA) or high-anxiety (HA) levels, as assessed by the elevated plus maze test (EPM) GABA-Bzp modulation on the unconditioned AEP response was analyzed by using intra CIC injections (0 2 mu l) of the GABA-Bzp agonists muscimol (121 ng) and diazepam (30 mu g) or the GABA inhibitors bicuculline (10 ng) and semicarbazide (7 mu g) In a second experiment, we evaluate the effects of contextual aversive conditioning on AEP using foot shocks as unconditioned stimuli On the unconditioned fear paradigm GABA inhibition in creased AEP in LA rats and decreases this measure in HA counterparts Muscimol was effective in reducing AEP in both LA and HA rats Contextual fear stimuli increased the magnitude of AEP In spite of no effect obtained with diazepam in LA rats the drug inhibited AEP in HA animals The specificity of the regulatory mechanisms mediated by GABA Bzp for the ascending neurocircuits responsible for the acquisition of aversive information in LA and HA animals shed light on the processing of sensory information underlying the generation of defensive reactions (C) 2010 IBRO Published by Elsevier Ltd All rights reserved
Resumo:
Rats with a bilateral neonatal ventral hippocampus lesion (NVHL) are used as models of neurobiological aspects of schizophrenia. In view of their decreased number of GABAergic interneurons, we hypothesized that they would show increased reactivity to acoustic stimuli. We systematically characterized the acoustic reactivity of NVHL rats and sham operated controls. They were behaviourally observed during a loud white noise. A first cohort of 7 months` old rats was studied. Then the observations were reproduced in a second cohort of the same age after characterizing the reactivity of the same rats to dopaminergic drugs. A third cohort of rats was studied at 2, 3, 4, 5 and 6 months. In subsets of lesioned and control rats, inferior colliculus auditory evoked potentials were recorded. A significant proportion of rats (50-62%) showed aberrant audiogenic responses with explosive wild running resembling the initial phase of audiogenic seizures. This was not correlated with their well-known enhanced reactivity to dopaminergic drugs. The proportion of rats showing this strong reaction increased with rats` age. After the cessation of the noise, NVHL rats showed a long freezing period that did neither depend on the size of the lesion nor on the rats` age. The initial negative deflection of the auditory evoked potential was enhanced in the inferior colliculus of only NVHL rats that displayed wild running. Complementary anatomical investigations using X-ray scans in the living animal, and alizarin red staining of brain slices, revealed a thin layer of calcium deposit close to the medial geniculate nuclei in post-NVHL rats, raising the possibility that this may contribute to the hyper-reactivity to sounds seen in these animals. The findings of this study provide complementary information with potential relevance for the hyper-reactivity noted in patients with schizophrenia, and therefore a tool to investigate the underlying biology of this endophenotype. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.
Resumo:
There is not a specific test to diagnose Alzheimer`s disease (AD). Its diagnosis should be based upon clinical history, neuropsychological and laboratory tests, neuroimaging and electroencephalography (EEG). Therefore, new approaches are necessary to enable earlier and more accurate diagnosis and to follow treatment results. In this study we used a Machine Learning (ML) technique, named Support Vector Machine (SVM), to search patterns in EEG epochs to differentiate AD patients from controls. As a result, we developed a quantitative EEG (qEEG) processing method for automatic differentiation of patients with AD from normal individuals, as a complement to the diagnosis of probable dementia. We studied EEGs from 19 normal subjects (14 females/5 males, mean age 71.6 years) and 16 probable mild to moderate symptoms AD patients (14 females/2 males, mean age 73.4 years. The results obtained from analysis of EEG epochs were accuracy 79.9% and sensitivity 83.2%. The analysis considering the diagnosis of each individual patient reached 87.0% accuracy and 91.7% sensitivity.
Resumo:
Al-3-11% Si alloys have been high-pressure die-cast and characterized microstructurally. Alstruc was used to calculate the solidification characteristics and fraction of eutectic. Defect bands were observed at all Si contents, although their constitution, position and distinctiveness were a function of Si content. The defect bands contain a higher fraction Al-Si eutectic than the surroundings in all alloys, and porosity was additionally found in the band in AlSi3. With decreasing Si content, the defect bands formed closer to the casting surface, became more prevalent and also the width of the bands decreased. These differences are discussed by considering the effect of Si content on the distribution of solid in the mushy wall layers and on the feeding potentials of the alloys. The observations are consistent with the mechanism proposed by Gourlay et al. in which bands form due to deformation within the solidifying mushy wall layers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background. The ability to inhibit inappropriate or unwanted actions is a key element of executive control. The existence OF executive function deficits in schizophrenia is consistent with frontal lobe theories of the disorder. Relatively few Studies have examined response inhibition in schizophrenia, and none in adolescent patients with early-onset schizophrenia (EOS). Methods. Twenty-one adolescents with (lie onset of clinically impairing psychosis before 19 years of age and 16 matched controls performed a stop-signal task to assess response inhibition. The patients with EOS were categorized Lis paranoid (n= 10) and Undifferentiated subtypes (n= 11). The undifferentiated group had higher levels of negative symptomatology. Stop-signal reaction time (SSRT) and go-signal reaction time (Go-RT) were analysed with respect to hand of response. Results. The Undifferentiated early-onset patients had significantly longer SSRTs, indicative of poor response inhibition, for the left hand compared to the paranoid early-onset patients and control participants. No differences existed for inhibitory control with the right hand. The three groups did not differ in Go-RT. Conclusions. Our results indicate a specific lateralized impairment of response inhibition in patients With Undifferentiated, but not paranoid, EOS. These findings are consistent with reports of immature frontostriatal networks in EOS and implicate areas such as the pre-motor cortex and Supplementary motor area (SMA) that are thought to play a role in both voluntary initiation and inhibition of movement.
Resumo:
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of similar to 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV, Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of similar to 115 pS and depolarization of similar to 32 mV, All these results are consistent with cAMP-gated cation channels dominating the odorant response, This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Resumo:
1. Intracellular recordings were made from neurones in the rat otic ganglion in vitro in order to investigate their morphological, physiological and synaptic properties. We took advantage of the simple structure of these cells to test for a possible role of calcium influx via nicotinic acetylcholine receptors during synaptic transmission. 2. Cells filled with biocytin comprised a homogeneous population with ovoid somata and sparse dendritic trees. Neurones had resting membrane potentials of -53 +/- 0.7 mV (n = 69), input resistances of 112 + 7 M Omega, and membrane time constants of 14 +/- 0.9 ms (n = 60). Upon depolarization, all cells fired overshooting action potentials which mere followed by an apamin-sensitive after-hyperpolarization (AHP). In response to a prolonged current injection, all neurones fired tonically. 3. The repolarization phase of action potentials had a calcium component which was mediated by N-type calcium channels. Application of omega-conotoxin abolished both the repolarizing hump and the after-hgrperpolarization suggesting that calcium influx via N-type channels activates SK-type calcium-activated potassium channels which underlie the AHP. 4. The majority (70%) of neurones received innervation from a single preganglionic fibre which generated a suprathreshold excitatory postsynaptic potential mediated by nicotinic acetylcholine receptors. The other 30% of neurones also had one or more subthreshold nicotinic inputs. 5. Calcium influx via synaptic nicotinic receptors contributed to the AHP current, indicating that this calcium has access to the calcium-activated potassium channels and therefore plays a role in regulating cell excitability.
Resumo:
BACKGROUND Marshall bundles (MBs) are the muscle bundles within the ligament of Marshall. OBJECTIVE This trial sought to the electrophysiological characteristics of the MB and the anatomical connections between MB and left atrium (LA) in patients with persistent atrial fibrillation (AF). METHODS We enrolled 72 patients (male: female 59: 13, age 59.9 +/- 9.4 years) who underwent MB mapping and ablation for AF. MB mapping was done via an endocardial or epicardial approach during sinus rhythm and AF. RESULTS Recordings were successful in 64 of 72 patients (89%). A single connection was noted in 11 of 64 patients between the MB and the coronary sinus (CS) muscle sleeves. The MB recordings showed distinct MB potentials with a proximal-to-distal activation pattern during sinus rhythm. During AF, organized passive activations and dissociated slow MB ectopic activities were commonly observed in this type of connection. Double connections to both CS and LA around left pulmonary veins were noted in 23 of 64 patients (36%). After the ablation of the distal connection, MB recording showed typical double potentials as in single connection. Multiple connections were noted in 30 of 64 patients (47%). During sinus rhythm, the earliest activation was in the middle of the MB. The activation patterns were irregular and variable in each patient. During AF, rapid and fractionated complex activations were noted in all patients of this group. CONCLUSION We documented 3 different types of MB-LA connections. Rapid and fractionated activations were most commonly observed in the MB that had multiple LA connections.
Resumo:
Among nonmotor symptoms observed in Parkinson`s disease (PD) dysfunction in the visual system, including hallucinations, has a significant impact in their quality of life. To further explore the visual system in PD patients we designed two fMRI experiments comparing 18 healthy volunteers with 16 PD patients without visual complaints in two visual fMRI paradigms: the flickering checkerboard task and a facial perception paradigm. PD patients displayed a decreased activity in the primary visual cortex (Broadmann area 17) bilaterally as compared to healthy volunteers during flickering checkerboard task and increased activity in fusiform gyms (Broadmann area 37) during facial perception paradigm. Our findings confirm the notion that PD patients show significant changes in the visual cortex system even before the visual symptoms are clinically evident. Further studies are necessary to evaluate the contribution of these abnormalities to the development visual symptoms in PD. (C) 2010 Movement Disorder Society
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.