915 resultados para polarization holographic optical recording
Resumo:
Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.
Resumo:
A new generation of surface plasmonic optical fibre sensors is fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Post-deposition UV laser irradiation using a phase mask produces a nano-scaled surface relief grating structure, resembling nano-wires. The overall length of the individual corrugations is approximately 14 μm with an average full width half maximum of 100 nm. Evidence is presented to show that these surface structures result from material compaction created by the silicon dioxide and germanium layers in the multi-layered coating and the surface topology is capable of supporting localised surface plasmons. The coating compaction induces a strain gradient into the D-shaped optical fibre that generates an asymmetric periodic refractive index profile which enhances the coupling of the light from the core of the fibre to plasmons on the surface of the coating. Experimental data are presented that show changes in spectral characteristics after UV processing and that the performance of the sensors increases from that of their pre-UV irradiation state. The enhanced performance is illustrated with regards to change in external refractive index and demonstrates high spectral sensitivities in gaseous and aqueous index regimes ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. The devices generate surface plasmons over a very large wavelength range, (visible to 2 μm) depending on the polarization state of the illuminating light. © 2013 SPIE.
Resumo:
In this letter, a novel phase noise estimation scheme has been proposed for coherent optical orthogonal frequency division multiplexing systems, the quasi-pilot-aided method. In this method, the phases of transmitted pilot subcarriers are deliberately correlated to the phases of data subcarriers. Accounting for this correlation in the receiver allows the required number of pilots needed for a sufficient estimation and compensation of phase noise to be reduced by a factor of 2 in comparison with the traditional pilot-aided phase noise estimation method. We carried out numerical simulation of a 40 Gb/s single polarization transmission system, and the outcome of the investigation indicates that by applying quasi-pilot-aided phase estimation, only four pilot subcarriers are needed for effective phase noise compensation. © 2014 IEEE.
Resumo:
We report experimental observation of new tightly and loosely bound state vector solitons with locked and precessing states of polarization in a carbon nanotube mode locked fiber laser in the anomalous dispersion regime. ©2013 Optical Society of America.
Resumo:
Optical millimeter wave generation is realized using dual polarization modes operation from a co-located dual distributed feedback fiber laser configuration. A narrow linewidth optical millimeter wave signal at 32.5 GHz is demonstrated without using complex control mechanism.
Resumo:
In this paper, we demonstrate a fast switching dual polarization DDQPSK packet switched receiver with very short waiting times. The system employs mth power DDQPSK decoding for high frequency offset tolerance, and Stokes parameter estimation for robust polarization demultiplexing.
Resumo:
A distributed fiber sensing system based on ultraweak FBGs (UWFBGs) assisted polarization optical time-domain reflectometry (POTDR) is proposed for load and vibration sensing with improved signal-to-noise ratio (SNR) and sensitivity. UWFBGs with reflectivity higher than Rayleigh scattering coefficient per pulse are induced into a POTDR system to increase the intensity of the back signal. The performance improvement of the system has been studied. The numerical analysis has shown that the SNR and sensitivity of the system can be effectively improved by integrating UWFBGs along the whole sensing fiber, which has been clearly proven by the experiment. The experimental results have shown that by using UWFBGs with 1.1 x 10-5 reflectivity and 10-m interval distance, the SNR is improved by 11 dB, and the load and vibration sensitivities of the POTDR are improved by about 10.7 and 9 dB, respectively.
Resumo:
Bragg gratings photo-inscribed in polymer optical fibers (POFs) are more sensitive to temperature and pressure than their silica counterparts, because of their larger thermo-optic coefficient and smaller Young's modulus. Polymer optical fiber Bragg gratings (POFBGs) are most often photo-written in poly(methylmethacrylate) (PMMA) based materials using a continuous-wave 325 nm HeCd laser. In this work, we present the first study about birefringence effects in POFBGs manufactured in different types of fiber. To achieve this, highly reflective (> 90%) gratings were produced with the phase mask technique. Their spectral response was then monitored in transmission with polarized light. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyzer. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. An inverse scattering technique applied to the experimental data provided an estimate of the photo-induced birefringence value arising from the side fabrication process. The response to lateral force was finally investigated for various incident directions using the PDL response of FBGs manufactured in step-index POFs. As the force induced birefringence adds to the photo-induced one, a force dependent evolution of the PDL maximum value was noticed, with a good temperature-insensitivity.
Resumo:
A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.
Resumo:
We examine the correlations between the parameters of ultra-narrow off-centred filtering and pulse width on the performance of a wavelength paired Nx40Gbit/s DWDM transmission, consisting of carrier suppressed return-to-zero signal with 0.64 bit/s/Hz (without polarization-division multiplexing) spectral efficiency. © 2004 Optical Society of America.
Resumo:
We experimentally demonstrate an all-fiber single-polarization dual-wavelength Yb-doped fiber laser passively mode-locked with a 45°-tilted fiber grating for the first time. Stable dual-wavelength operation exhibits double-rectangular spectral profile centered at 1033 and 1053 nm, respectively. The 3 dB bandwidth of each rectangular optical spectrum is estimated as 10 nm. The separation of two fundamental repetition rates is 6 kHz. By employing the 45° TFG with the polarization-dependent loss of 33 dB, output pulses with 27 dB polarization extinction ratio are implemented in the experiment. The single pulse centered at 1053 nm is researched by using a filter at the output port of the laser, and the experimental results denote that the output ps pulses are highly chirped. The formation mechanism of dual-wavelength operation is investigated.
Resumo:
Here we present first investigation of polarization dynamics from a carbon nanotube mode locked erbium doped fiber laser. Both vector and polarization switching dissipative soliton have been observed. © 2014 Optical Society of America.
Resumo:
We report on a new vector model of an erbium doped fiber laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. It results in a new family of vector solitons with fast evolving states of polarization experimentally observed in our previous papers.
Resumo:
We study polarization dynamics of a harmonic mode-locked erbium-doped fiber laser with carbon nanotubes absorber. New types of vector solitons are shown for multi-pulse and harmonic mode-locked operation with locked, switching and precessing polarization states. © 2014 OSA.