983 resultados para plaque vulnérable
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
Background: Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including central obesity, insulin resistance, impaired glucose tolerance, hypertension and dyslipidemia. The prevalence of MetS is increasing worldwide in all age groups. MetS is associated with increased risk of cardiovascular disease and type 2 diabetes mellitus. Aims: The aim of the present study was to investigate the prevalence, secular trends and childhood predictors of MetS in young adults. Furthermore, the relations between MetS and subclinical atherosclerosis were studied and whether apolipoproteins (apo) B and A-I, C-reactive protein (CRP) and type II secretory phospholipase A2 (sPLA2) were associated with MetS, and to what extent the atherogenicity of MetS was explained by these factors. Participants and Methods: The present thesis is part of the large scale population-based, prospective study, the Cardiovascular Risk in Young Finns Study. The first cross-sectional study was conducted in 1980 and included 3,596 participants aged 3-18 years. Carotid and brachial ultrasound studies were performed for 2,283 of these participants in 2001 and 2,200 of these participants in 2007. Results: The overall prevalence of MetS in young adults aged 24-39 years in 2001 was 10-15 % and 6 years later in 30-45 year-old adults it was 15-23 % depending on the MetS definition used. Between the years 1986 and 2001, MetS prevalence increased from 1.0 % to 7.5 % (p<0.0001) in 24-year-old participants that was mostly driven by the increased central obesity. Participants with MetS had increased carotid intima-media thickness (cIMT) and decreased carotid elasticity compared to those without the syndrome. Impaired brachial flow-mediated dilatation (FMD) was not related to MetS but it modified the relationship between MetS and cIMT (P for interaction 0.023). High levels of apoB, CRP, sPLA2 and low levels of apoA-I associated with MetS in young adults. In prospective analysis both MetS and high apoB predicted (P<0.0001) incident high cIMT, defined as cIMT>90th percentile and/or plaque. The association between MetS and incident high cIMT was attenuated by ~40 % after adjustment with apoB. Conclusions: MetS is common in young adults and increases with age. Screening for risk factors, especially obesity, at an early life stage could help identify children and adolescents at increased risk of developing MetS and cardiovascular disease later in life. MetS identifies a population of young adults with evidence of increased subclinical atherosclerosis. Impaired brachial endothelial response is not a hallmark of MetS in young adults, but the status of endothelial function modifies the association between metabolic risk factors and atherosclerosis. In addition, the atherogenicity of MetS in this population assessed by incident high cIMT appears to be substantially mediated by elevated apoB.
Resumo:
The mechanisms leading to an enhanced susceptibility to gingivitis in pregnant women have not yet been completely described. Therefore, the current study series were performed to investigate longitudinally the influence of pregnancy on periodontal tissues, and to evaluate microbial and host response factors related to pregnancy gingivitis formation. Pregnancy-related periodontal changes were analysed in 30 generally healthy women (24- 35 years old) once per trimester, till the end of lactation. Matched non-pregnant women (n=24) served as the controls, and were examined three times, once per following month. Pregnancy-related gingival inflammation was observed as enhanced tendency towards gingival bleeding and pseudopocket formation with a concomitant decrease in plaque levels. Gingivitis reached its peak during mid-pregnancy and then decreased transiently visit by visit. After lactation, no differences in periodontal status were seen between the study and control populations. In contrast to previous studies reporting increased levels of Prevotella intermedia, a specific aim was to analyse phenotypically two identical species, P. intermedia and Prevotella nigrescens, separately using a 16S ribosomal DNA-based PCR. As a result, the increased levels of P. nigrescens were related to pregnancy gingivitis. Matrix metalloproteinases (MMPs) are involved in periodontal destruction. However, their role in pregnancy gingivitis is not well studied. Therefore, neutrophilic enzymes and proteinases, such as MMP and myeloperoxidase (MPO) levels were analysed from saliva and gingival crevicular fluid (GCF) samples during the follow-up. Despite increased inflammation and microbial shift towards anaerobes, the host response did not activate the MMP, elastase and MPO secretion during pregnancy. These results demonstrate that during pregnancy gingival inflammation is enhanced especially during the second trimester, when P. nigrescens levels in subgingival plaque were increased, whereas the neutrophilic enzymes and proteinase levels in both saliva and GCF remained low. These findings could explain, at least in part, why pregnancy gingivitis itself does not predispose or proceed to periodontitis.
Resumo:
The objective of this review on the investigation of "cara inchada" in cattle (CI), pursued over the last 30 years, was to elucidate the pathogenicity of the disease and come to proper conclusions on its etiology. CI has been widely considered to be of nutritional origin, caused primarily by mineral deficiency or imbalance. However, the disease consists of a rapidly progressive periodontitis, affecting the periodontal tissues at the level of the premolars and molars during the period of tooth eruption generally starting in young calves. The disease led to great economic losses for farmers in central-western Brazil, after the occupation of new land for cattle raising in the 1960s and 1970s. The lateral enlargement of the maxillary bones of affected calves gave the disease the popular name of "cara inchada", i.e., swollen or enlarged face. The enlargement was found to be due to a chronic ossifying periostitis resulting from the purulent alveolitis of CI. Black-pigmented non-saccharolytic Bacteroides melaninogenicus, always together with Actinomyces (Corynebacterium) pyogenes, were isolated in large numbers from the periodontal lesions. B. melaninogenicus could be isolated in small numbers also from the marginal gingiva of a few healthy calves maintained on CI-free farms. "In vitro"-assays showed that streptomycin and actinomycin, as well as the supernatants of cultivates of actinomycetes from soils of CI-prone farms, applied in subinhibitory concentrations to the bacteria tested, enhanced significantly (up to 10 times) the adherence of the black-pigmented B.melaninogenicus to epithelial cells of the bovine gingiva. The antibiotics are apparently produced in large quantities by the increased number of soil actinomycetes, including the genus Streptomyces, that develop when soil microflora are modified by cultivating virgin forest or "Cerrado" (tree-savanna) for the first time for cattle grazing. The epidemiology of CI now provides strong evidence that the ingestion with the forage of such antibiotics could possibly be an important determinant factor for the onset and development of this infectious periodontitis. The antibiotic enhanced adherence of B.melaninogenicus to the sulcus-epithelium of the marginal gingiva, is thought to allow it to colonize, form a plaque and become pathogenic. There is experimental evidence that this determinant factor for the development of the periodontitis is present also in the milk of the mothers of CI-diseased calves. It has been shown that the bacteria isolated from the periodontal CI-lesions produce enzymes and endotoxins capable of destroying the periodontal tissues. The epidemiology of CI, with its decline in incidence and its disappearance after several years, could be explained by the fact that the former equilibrium of the microflora of the once undisturbed virgin soil has been reached again and that the number of antibiotic producing actinomycetes has been anew reduced. By this reasoning and all the data available, CI should be considered as a multifactorial infectious disease, caused primarily by the anaerobic black-pigmented non-saccharolytic Bacteroides melaninogenicus, always together with the micro-anaerobic Actinomyces pyogenes. Accordingly, the onset and development of the infectious periodontitis is apparently determined by ingestion with the forage of subinhibitory concentrations of antibiotics produced in recently cultivated virgin soils. This hypothesis is supported by the recent observation of renewed outbreaks of CI-periodontitis in former CI-prone areas, following fresh cultivation after many years. The infectious nature of CI is confirmed by trials in which virginiamycin was used efficiently for the oral treatment of CI-diseased cattle. Previously it has been shown, that spiramycin and virginiamycin, used as additives in mineral supplements, prevented CI-periodontitis.
Resumo:
In the present study we investigated the presence of infections by vaccinia-like viruses in dairy cattle from 12 counties in the state of Rio de Janeiro in the last 9 years. Clinical specimens were collected from adult animals with vesicular/pustular lesions mainly in the udder and teats, and from calves with lesions around the nose and mouth. A plaque reduction neutralization test (PRNT) was applied to search for antibodies to Orthopoxvirus; the vesicular/pustular fluids and scabs were examined by PCR, electron microscopy (EM) and by inoculation in VERO cells for virus isolation. Antibodies to Orthopoxvirus were detected in most cases. The PCR test indicated a high nucleotide homology among the isolates and the vaccinia viruses (VACV) used as controls. By EM, typical orthopoxvirus particles were observed in some specimens. The agents isolated in tissue culture were confirmed as vaccinia-like viruses by EM and PCR. The HA gene of the vaccinia-like Cantagalo/IOC virus isolated in our laboratory was sequenced and compared with other vaccinia-like isolates, showing high homology with the original Cantagalo strain, both strains isolated in 1999 from dairy cattle. Antibodies to Orthopoxvirus were detected in one wild rodent (genus Akodon sp.) collected in the northwestern region of the state, indicating the circulation of poxvirus in this area. Nonetheless, PCR applied to tissue samples collected from the wild rodents were negative. Vesicular/pustular lesions in people in close contact with animals have been also recorded. Thus, the vaccinia-like virus infections in cattle and humans in the state seem to be an expanding condition, resulting in economic losses to dairy herds and leading to transient incapacitating human disease. Therefore, a possible immunization of the dairy cattle in the state should be carefully evaluated.
Resumo:
Eight-week old conventional female Swiss mice were inoculated intravenously with Yersinia enterocolitica O:3. A second group of normal mice was used as control. Five mice from each group were bled by heart puncture and their spleens were removed for spleen cell collection on the 3rd, 5th, 7th, 10th, 14th and 21st day after infection. Immunoglobulin-secreting spleen cells were detected by the isotype-specific protein A plaque assay. Total immunoglobulin levels were determined in mouse serum by single radial immunodiffusion and the presence of autoantibodies was determined by ELISA. We observed a marked increase in the total number of cells secreting immunoglobulins of all isotypes as early as on the 3rd day post-infection and the peak of secretion occurred on the 7th day. At the peak of the immunoglobulin response, the total number of secreting cells was 19 times higher than that of control mice and most immunoglobulin-secreting cells were of the IgG2a isotype. On the 10th day post-infection, total serum immunoglobulin values were 2 times higher in infected animals when compared to the control group, and continued at this level up to the 21st day post-infection. Serum absorption with viable Y. enterocolitica cells had little effect on antibody levels detected by single radial immunodiffusion. Analysis of serum autoantibody levels revealed that Y. enterocolitica infection induced an increase of anti-myosin and anti-myelin immunoglobulins. The sera did not react with collagen. The present study demonstrates that Y. enterocolitica O:3 infection induces polyclonal activation of murine B cells which is correlated with the activation of some autoreactive lymphocyte clones
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
Hypertension is one of the major precursors of atherosclerotic vascular disease, and vascular smooth muscle abnormal cell replication is a key feature of plaque formation. The present study was conducted to examine the relationship between hypertension and smooth muscle cell proliferation after balloon injury and to correlate neointima formation with resting membrane potential of uninjured smooth muscle cells, since it has been suggested that altered vascular function in hypertension may be related to the resetting of the resting membrane potential in spontaneously hypertensive rats (SHR). Neointima formation was induced by balloon injury to the carotid arteries of SHR and renovascular hypertensive rats (1K-1C), as well as in their normotensive controls, i.e., Wistar Kyoto (WKY) and normal Wistar (NWR) rats. After 14 days the animals were killed and the carotid arteries were submitted to histomorphometric and immunohistochemical analyses. Resting membrane potential measurements showed that uninjured carotid arteries from SHR smooth muscle cells were significantly depolarized (-46.5 ± 1.9 mV) compared to NWR (-69 ± 1.4 mV), NWR 1K-1C (-60.8 ± 1.6 mV), WKY (-67.1 ± 3.2 mV) and WKY 1K-1C (-56.9 ± 1.2 mV). The SHR arteries responded to balloon injury with an enhanced neointima formation (neo/media = 3.97 ± 0.86) when compared to arteries of all the other groups (NWR 0.93 ± 0.65, NWR 1K-1C 1.24 ± 0.45, WKY 1.22 ± 0.32, WKY 1K-1C 1.15 ± 0.74). Our results indicate that the increased fibroproliferative response observed in SHR is not related to the hypertensive state but could be associated with the resetting of the carotid smooth muscle cell resting membrane potential to a more depolarized state.
Resumo:
This paper reports what is apparently the first observation of Mycoplasma pneumoniae in association with Chlamydia pneumoniae in thrombosed ruptured atheromas. We performed electron microscopy and in situ hybridization in specimens from three patients who died of acute myocardial infarction. These patients had typical symptoms of acute ischemic syndrome. Mycoplasmas were present mainly in the lipid core of the ruptured thrombosed plaque. Vulnerable atheromas are rich in cholesterol and may favor the growth of mycoplasmas, the only microorganisms that require cholesterol for survival. We suggest that the association of Mycoplasma pneumoniae and Chlamydia pneumoniae may increase the virulence of these microorganisms, favoring proliferation, plaque inflammation and possibly plaque rupture.
Resumo:
Extracellular matrix (ECM) molecules play important roles in the pathobiology of the major human central nervous system (CNS) inflammatory/demyelinating disease multiple sclerosis (MS). This mini-review highlights some recent work on CNS endothelial cell interactions with vascular basement membrane ECM as part of the cellular immune response, and roles for white matter ECM molecules in demyelination and remyelination in MS lesions. Recent basic and clinical investigations of MS emphasize axonal injury, not only in chronic MS plaques, but also in acute lesions; progressive axonal degeneration in normal-appearing white matter also may contribute to brain and spinal cord atrophy in MS patients. Remodeling of the interstitial white matter ECM molecules that affect axon regeneration, however, is incompletely characterized. Our ongoing immunohistochemical studies demonstrate enhanced ECM versican, a neurite and axon growth-inhibiting white matter ECM proteoglycan, and dermatan sulfate proteoglycans at the edges of inflammatory MS lesions. This suggests that enhanced proteoglycan deposition in the ECM and axonal growth inhibition may occur early and are involved in expansion of active lesions. Decreased ECM proteoglycans and their phagocytosis by macrophages along with myelin in plaque centers imply that there is "injury" to the ECM itself. These results indicate that white matter ECM proteoglycan alterations are integral to MS pathology at all disease stages and that they contribute to a CNS ECM that is inhospitable to axon regrowth/regeneration.
Resumo:
Ultrasonic attenuation coefficient, wave propagation speed and integrated backscatter coefficient (IBC) of human coronary arteries were measured in vitro over the -6 dB frequency bandwidth (36 to 67 MHz) of a focused ultrasound transducer (50 MHz, focal distance 5.7 mm, f/number 1.7). Corrections were made for diffraction effects. Normal and diseased coronary artery sub-samples (N = 38) were obtained from 10 individuals at autopsy. The measured mean ± SD of the wave speed (average over the entire vessel wall thickness) was 1581.04 ± 53.88 m/s. At 50 MHz, the average attenuation coefficient was 4.99 ± 1.33 dB/mm with a frequency dependence term of 1.55 ± 0.18 determined over the 36- to 67-MHz frequency range. The IBC values were: 17.42 ± 13.02 (sr.m)-1 for thickened intima, 11.35 ± 6.54 (sr.m)-1 for fibrotic intima, 39.93 ± 50.95 (sr.m)-1 for plaque, 4.26 ± 2.34 (sr.m)-1 for foam cells, 5.12 ± 5.85 (sr.m)-1 for media and 21.26 ± 31.77 (sr.m)-1 for adventitia layers. The IBC results indicate the possibility for ultrasound characterization of human coronary artery wall tissue layer, including the situations of diseased arteries with the presence of thickened intima, fibrotic intima and plaque. The mean IBC normalized with respect to the mean IBC of the media layer seems promising for use as a parameter to differentiate a plaque or a thickened intima from a fibrotic intima.
Resumo:
Hormone replacement therapy (HRT) reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp) and oxidized low density lipoprotein (LDL) have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11) and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02) (P<0.05 and P<0.001, respectively, ANOVA). The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.
Resumo:
Although much is known about the molecules involved in extracellular Ca2+ regulation, the relationship of the ion with overall cell morphology is not understood. The objective of the present study was to determine the effect of the Ca2+ chelator EGTA on the major cytoskeleton components, at integrin-containing adhesion sites, and their consequences on cell shape. Control mouse cell line C2C12 has a well-spread morphology with long stress fibers running in many different directions, as detected by fluorescence microscopy using rhodamine-phalloidin. In contrast, cells treated with EGTA (1.75 mM in culture medium) for 24 h became bipolar and showed less stress fibers running in one major direction. The adhesion plaque protein alpha5-integrin was detected by immunofluorescence microscopy at fibrillar adhesion sites in both control and treated cells, whereas a dense labeling was seen only inside treated cells. Microtubules shifted from a radial arrangement in control cells to a longitudinal distribution in EGTA-treated cells, as analyzed by immunofluorescence microscopy. Desmin intermediate filaments were detected by immunofluorescence microscopy in a fragmented network dispersed within the entire cytoplasm in EGTA-treated cells, whereas a dense network was seen in the whole cytoplasm of control cells. The present results suggest that the role of extracellular Ca2+ in the regulation of C2C12 cell shape can be mediated by actin-containing stress fibers and microtubules and by intermediate filament reorganization, which may involve integrin adhesion sites.
Resumo:
Caries is a plaque-associated multifactorial chronic disease. Oral hygiene habits, sugar, and oral micobiota interactions are important for caries to occur. Xylitol has been shown to reduce caries mainly due to its effects on mutans streptococci (MS). The purpose of this study was to evaluate the relationship of daily oral health habits and bacterial level on the caries occurrence and to study the effect of xylitol on the composition of oral microflora. A total of 192, 10-12 years old, male school children had been screened for salivary MS. Healthy subjects with high MS counts participated in two parallel double-blinded, randomised, controlled trials. In the first 5-week trial, subjects were assigned into xylitol (n=35) and sorbitol gum (n=38) groups. At baseline, children were examined using International Caries Detection and Assessment System (ICDAS) criteria and interviewed for oral health habits. In the second 4-week trial, subjects were assigned into xylitol (n=25) and saccharine mouthrinse (n=25) groups. In the end of both interventions, saliva samples were collected. The samples were analysed for changes in MS counts and changes in the composition of the oral microbiota assessed by the Human Oral Microbe Identification Microarray (HOMIM). Relationships between daily habits, bacterial levels and caries were evaluated. Daily use of sweets and soft drinks were the habits significantly associated with caries severity measured by ICDAS Caries Index (CI), while toothbrushing was the only habit associated with the low caries severity. Abiotrophia defectiva and Actinomyces meyeri/ A. odontolyticus were significantly higher in caries-affected children while Shuttleworthia satelles was significantly higher in caries-free children. Xylitol showed significant reduction in salivary levels of MS in both trials. No significant effects on other members of the microbiota were found when evaluated by HOMIM. In conclusion, other members of oral microbiota than MS may be associated with caries occurrence or absence. The use of xylitol had significant effect on MS with no effects on the other members of the salivary microbiota.
Resumo:
Kaposi's sarcoma (KS) became a critical health issue with the emergence of acquired immunodeficiency syndrome (AIDS) in the 1980s. Four clinical-epidemiological forms of KS have been described: classical KS, endemic KS, iatrogenic KS, and AIDS-associated KS. In 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus type 8 was identified by Chang and colleagues, and has been detected worldwide at frequencies ranging from 80 to 100%. The aim of the present study was to evaluate the frequency of KSHV infection in KS lesions from HIV-positive and HIV-negative patients in Brazil, as well as to review the current knowledge about KS transmission and detection. For these purposes, DNA from 51 cases of KS was assessed by PCR: 20 (39.2%) cases of classical KS, 29 (56.9%) of AIDS-associated KS and 2 (3.9%) of iatrogenic KS. Most patients were males (7.5:1, M/F), and mean age was 47.9 years (SD = ± 18.7 years). As expected, HIV-positive KS patients were younger than patients with classical KS. On the other hand, patients with AIDS-associated KS have early lesions (patch and plaque) compared to classical KS patients (predominantly nodular lesions). This is assumed to be the result of the early diagnose of KS in the HIV-positive setting. KSHV infection was detected by PCR in almost all cases (48/51; 94.1%), irrespectively of the clinical-epidemiological form of KS. These results show that KSHV is associated with all forms of KS in Brazilian patients, a fact that supports the role of this virus in KS pathogenesis.