972 resultados para physicochemical properties
Resumo:
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
The brewing process is an energy intensive process that uses large quantities of heat and electricity. To produce this energy requires a high, mainly fossil fuel consumption and the cost of this is increasing each year due to rising fuel costs. One of the main by-products from the brewing process is Brewers Spent Grain (BSG), an organic residue with very high moisture content. It is widely available each year and is often given away as cattle feed or disposed of to landfill as waste. Currently these methods of disposal are also costly to the brewing process. The focus of this work was to investigate the energy potential of BSG via pyrolysis, gasification and catalytic steam reforming, in order to produce a tar-free useable fuel gas that can be combusted in a CHP plant to develop heat and electricity. The heat and electricity can either be used on site or exported. The first stage of this work was the drying and pre-treatment of BSG followed by characterisation to determine its basic composition and structure so it can be evaluated for its usefulness as a fuel. A thorough analysis of the characterisation results helps to better understand the thermal behaviour of BSG feedstock so it can be evaluated as a fuel when subjected to thermal conversion processes either by pyrolysis or gasification. The second stage was thermochemical conversion of the feedstock. Gasification of BSG was explored in a fixed bed downdraft gasifier unit. The study investigated whether BSG can be successfully converted by fixed bed downdraft gasification operation and whether it can produce a product gas that can potentially run an engine for heat and power. In addition the pyrolysis of BSG was explored using a novel “Pyroformer” intermediate pyrolysis reactor to investigate the behaviour of BSG under these processing conditions. The physicochemical properties and compositions of the pyrolysis fractions obtained (bio-oil, char and permanent gases) were investigated for their applicability in a combined heat power (CHP) application.
Resumo:
Copper oxide supported on nanoporous activated carbon (CuO-NPAC) is reported for the aqueous phase catalytic degradation of cyanotoxin microcystin-LR (MC-LR). The loading and spatial distribution of CuO throughout the NPAC matrix strongly influence the catalytic efficiency. CuO-NPAC synthesis was optimized with respect to the copper loading and thermal processing, and the physicochemical properties of the resulting materials were characterized by XRD, BET, TEM, SEM, EPR, TGA, XPS and FT-IR spectroscopy. EPR spin trapping and fluorescence spectroscopy showed in situ ˙OH formation via H2O2 over CuO-NPAC as the catalytically relevant oxidant. The impact of reaction conditions, notably CuO-NPAC loading, H2O2 concentration and solution pH, is discussed in relation to the reaction kinetics for MC-LR remediation.
Resumo:
Background: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences.Results: A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z1, z2 and z3) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop. AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity.Conclusions: AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin. © 2013 Dimitrov et al.; licensee BioMed Central Ltd.
Resumo:
Polymer-peptide conjugates (also known as biohy-brids) are attracting considerable attention as injectable materials owing to the self-assembling behavior of the peptide and the ability to control the material properties using the polymer component. To this end, a simple method for preparing poly(ethylene oxide)-oligophenylalanine polymer-peptide conjugates (mPEOm-F n-OEt) using isobutylchloroformate as the activating reagent has been identified and developed. The synthetic approach reported employs an industrially viable route to produce conjugates with high yield and purity. Moreover, the approach allows judicious selection of the precursor building blocks to produce libraries of polymer-peptide conjugates with complete control over the molecular composition. Control over the molecular make-up of the conjugates allows fine control of the physicochemical properties, which will be exploited in future studies into the prominent self-assembling behavior of such materials. © 2013 Wiley Periodicals, Inc.
Resumo:
Pt catalyst series were prepared on mesoporous SBA-15, SBA-16, KIT-6, true liquidcrystal-templated meso-macroporous SBA-15 and a commercial, low surface area silicasupport. Support structure can be easily fabricated using surfactant templating as a mode ofstringent control on porosity, surface area and internal structure. The impact of varying Pt-support physicochemical properties was systematically studied for the selective transformation of allylic substrates under chemoselective oxidation and hydrogenation regimes, a class of reactions highly applicable to industry. Pt-based heterogeneous catalysts are well-known for their utilisation in the hydrogenation of α,β-unsaturated aldehydes,although the mode of action and lack of systematic studies in the literature fuels continuing debate into the role of Pt nanoparticles and support choice for this area. This project attempts to shed some light on several frequently asked questions in this field. Successful support synthesis and stability after Pt impregnation is confirmed through HRTEM, XRD and N2 porosimetry. Decreasing metal loading promoted dispersion values,regardless of support choice, with surface PtO2 content also showing visible enhancement.Increasing support surface area and mesoporosity exhibited the following trend on Pt dispersion augmentation; low surface area commercial silica < true liquid crystal-templated SBA-15 < SBA-15 < SBA-16 ~ KIT-6. For the selective oxidation of cinnamyl alcohol,increasing PtO2 surface population confers substantial rate enhancements, with turnover frequencies evidencing PtO2 to be the active species .In the Pt-catalysed hydrogenation of cinnamaldehyde, strong support insensitivity was observed towards catalytic activity; as turnover frequencies normalised to Pt metal reveal constant values. However, structure sensitivity to the desired unsaturated alcohol arose,evidencing the requirement of flat, extended Pt (111) facets for C=O hydrogenation. Pt/SBA-15 proved the most selective, reflecting suppressed cinnamyl alcohol hydrogenation, with DRIFTS and in-situ ATR-IR evidencing the key role of support polarity in re-orientation of cinnamaldehyde to favour di-σCO adsorption and C=O versus C=C hydrogenation. High pressures increased activity, whilst a dramatic shift in selectivity from dominant C=C (1 bar)to C=O hydrogenation (10 bar) was also observed, attributed to surface crowding and suppression of di-σCC and η4 di-σCO+πC=C cinnamaldehyde binding modes.
Resumo:
One of the main problems related to the use of diesel as fuel is the presence of sulfur (S) which causes environmental pollution and corrosion of engines. In order to minimize the consequences of the release of this pollutant, Brazilian law established maximum sulfur content that diesel fuel may have. To meet these requirements, diesel with a maximum sulfur concentration equal to 10 mg/kg (S10) has been widely marketed in the country. However, the reduction of sulfur can lead to changes in the physicochemical properties of the fuel, which are essential for the performance of road vehicles. This work aims to identify the main changes in the physicochemical properties of diesel fuel and how they are related to reduction of sulfur content. Samples of diesel types S10, S500 and S1800 were tested according with the methods of the American Society for Testing and Materials (ASTM). The fuels were also characterized by thermogravimetric analysis (TG) and subjected to physical distillation (ASTM D86) and simulated distillation gas chromatography (ASTM D2887). The results showed that the reduction of sulfur turned the fuel lighter and fluid, allowing a greater applicability to low temperature environments and safer for transportation and storage. Through the simulated distillation data was observed that decreasing sulfur content resulted in higher initial boiling point temperatures and the decreasing of the boiling temperature of the medium and heavy fractions. Thermogravimetric analysis showed a loss event mass attributed to volatilization or distillation of light and medium hydrocarbons. Based on these data, the kinetic behavior of the samples was investigated and it was observed that the activation energies (Ea) did not show significant changes throughout conversion. Considering the average of these energies, the S1800 had the highest Ea during the conversion and the S10 the lowest values
Resumo:
The heavy part of the oil can be used for numerous purposes, e.g. to obtain lubricating oils. In this context, many researchers have been studying alternatives such separation of crude oil components, among which may be mentioned molecular distillation. Molecular distillation is a forced evaporation technique different from other conventional processes in the literature. This process can be classified as a special distillation case under high vacuum with pressures that reach extremely low ranges of the order of 0.1 Pascal. The evaporation and condensation surfaces must have a distance from each other of the magnitude order of mean free path of the evaporated molecules, that is, molecules evaporated easily reach the condenser, because they find a route without obstacles, what is desirable. Thus, the main contribution of this work is the simulation of the falling-film molecular distillation for crude oil mixtures. The crude oil was characterized using UniSim® Design and R430 Aspen HYSYS® V8.5. The results of this characterization were performed in spreadsheets of Microsoft® Excel®, calculations of the physicochemical properties of the waste of an oil sample, i.e., thermodynamic and transport. Based on this estimated properties and boundary conditions suggested by the literature, equations of temperature and concentration profiles were resolved through the implicit finite difference method using the programming language Visual Basic® (VBA) for Excel®. The result of the temperature profile showed consistent with the reproduced by literature, having in their initial values a slight distortion as a result of the nature of the studied oil is lighter than the literature, since the results of the concentration profiles were effective allowing realize that the concentration of the more volatile decreases and of the less volatile increases due to the length of the evaporator. According to the transport phenomena present in the process, the velocity profile tends to increase to a peak and then decreases, and the film thickness decreases, both as a function of the evaporator length. It is concluded that the simulation code in Visual Basic® language (VBA) is a final product of the work that allows application to molecular distillation of petroleum and other similar mixtures.
Resumo:
In this study, we investigated the effect of addition of partially hydrolyzed polyacrylamide (HPAM) and bentonite in the physicochemical properties of acquous drilling fluids. Two formulations were evaluated: F1 formulation, which was used as reference, containing carboxymethylcellulose (CMC), magnesium oxide (MgO), calcite (calcium carbonate - CaCO3 ), xanthan gum, sodium chloride (NaCl) and triazine (bactericidal); and F2, containig HPAM steady of CMC and bentonite in substituition of calcite. The prepared fluids were characterized by rheological properties, lubricity and fluid loss. Calcite was characterized by granulometry and thermal gravimetric analysis (TGA). The formulation F2 presented filtration control at 93◦C 34 mL while F1 had total filtration. The lubricity coefficient was 0.1623 for F2 and 0.2542 for F1, causing reduction in torque of 25% for F1 and 52 % for F2, compared to water. In the temperature of 49 ◦C and shear rate of 1022 s −1 , the apparent viscosities were 25, 5 and 48 cP for F1 and F2 formulation, respectively, showing greater thermal resistance to F2. With the confirmation of higher thermal stability of F2, factorial design was conducted in order to determine the HPAM and of bentonite concentrations that resulted in the better performance of the fluids. The statistical design response surfaces indicated the best concentrations of HPAM (4.3g/L) and bentonite (28.5 g/L) to achieve improved properties of the fluids (apparent viscosity, plastic viscosity, yield point and fluid loss) with 95% confidence, as well as the correlations between these factors (HPAM and bentonite concentrations). The thermal aging tests indicated that the formulations containing HPAM and bentonite may be used to the maximum temperature until 150 ◦C. The analyze of the filter cake formed after filtration of fluids by X-ray diffraction showed specific interactions between the bentonite and HPAM, explaining the greater thermal stability of F2 compared to the fluid F1, that supports maximum temperature of 93 ◦C.
Resumo:
Diesel fuel is one of leading petroleum products marketed in Brazil, and has its quality monitored by specialized laboratories linked to the National Agency of Petroleum, Natural Gas and Biofuels - ANP. The main trial evaluating physicochemical properties of diesel are listed in the resolutions ANP Nº 65 of December 9th, 2011 and Nº 45 of December 20th, 2012 that determine the specification limits for each parameter and methodologies of analysis that should be adopted. However the methods used although quite consolidated, require dedicated equipment with high cost of acquisition and maintenance, as well as technical expertise for completion of these trials. Studies for development of more rapid alternative methods and lower cost have been the focus of many researchers. In this same perspective, this work conducted an assessment of the applicability of existing specialized literature on mathematical equations and artificial neural networks (ANN) for the determination of parameters of specification diesel fuel. 162 samples of diesel with a maximum sulfur content of 50, 500 and 1800 ppm, which were analyzed in a specialized laboratory using ASTM methods recommended by the ANP, with a total of 810 trials were used for this study. Experimental results atmospheric distillation (ASTM D86), and density (ASTM D4052) of diesel samples were used as basic input variables to the equations evaluated. The RNAs were applied to predict the flash point, cetane number and sulfur content (S50, S500, S1800), in which were tested network architectures feed-forward backpropagation and generalized regression varying the parameters of the matrix input in order to determine the set of variables and the best type of network for the prediction of variables of interest. The results obtained by the equations and RNAs were compared with experimental results using the nonparametric Wilcoxon test and Student's t test, at a significance level of 5%, as well as the coefficient of determination and percentage error, an error which was obtained 27, 61% for the flash point using a specific equation. The cetane number was obtained by three equations, and both showed good correlation coefficients, especially equation based on aniline point, with the lowest error of 0,816%. ANNs for predicting the flash point and the index cetane showed quite superior results to those observed with the mathematical equations, respectively, with errors of 2,55% and 0,23%. Among the samples with different sulfur contents, the RNAs were better able to predict the S1800 with error of 1,557%. Generally, networks of the type feedforward proved superior to generalized regression.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
As the degraded products of chitosan, chitooligosaccharides (COS) have recently been produced by several methods, such as enzymatic an acidic hydrolysis. Chitosans are a family of biocompatible and biodegradable biopolymers obtained by N-deacetylation of chitin, the most abundant natural polymer after cellulose, consisting of two monomeric units, N-acetyl-2- amino-2-deoxi-D-glucose (A units) and 2-amino-2-deoxi-D-glucose (D units) linked by β (1→4) links. The degraded products COS, have a smaller molecular weight and therefore have better solubility and lower viscosity under physiological conditions because of shorter chain lengths and free amino groups in D-glucosamine units. The study of COS has been increasing not only because they come from a natural source, but also because of their biological compatibility and effectiveness. There are numerous reports on the biological activities of COS and their potential applications in food industry, pharmacy, agricultural or biomedicine. Nevertheless, in these studies it is difficult to find well defined COS in terms of physicochemical parametres, because these samples are usually poorly characterized. This makes it difficult to compare the results and to understand their mecanism of action. Degradation of the O-glycosidic linkages of chitosan by different methods, results in COS with different numbers and sequences of A and D units as well as different degrees of polymerisation (DP). Over the past few years, several technological approaches have been taken in preparing COS, including acid hydrolysis or enzymatic methods, among others. Therefore, in order to obtain COS with different physicochemical properties, different preparation methods of COS have been developed in this work. Then, the study of the relationship between physicochemical properties of these COS and their biological activities such as natural antioxidants, antibacterial agents, mucoadhesive and anti-inflammatory effects have been studied...
Resumo:
© The Royal Society of Chemistry 2016.Silver nanoparticles (AgNPs) are extensively used for their antibacterial properties in a diverse set of applications, ranging from the treatment of municipal wastewater to infection control in hospitals. However, the properties of AgNPs that render them conducive to bactericidal use in commerce may influence their potential toxicity to non-bacterial organisms. Based on the physiological and phylogenetic similarities between bacteria and mitochondria within eukaryotic cells, mitochondria are a likely intracellular target of AgNP toxicity. Mitochondria-specific outcomes of AgNP exposures have been identified in multiple cell types, including (but not limited to) loss of membrane potential, inhibition of enzymes involved in oxidative phosphorylation, and changes in calcium sequestration. However, the biological significance of mitochondrial toxicity due to AgNP exposure is currently incompletely understood. This review examines the existing evidence of mitochondrial toxicity induced by AgNP exposure, with discussions of the role of the physicochemical properties of the nanoparticles themselves in mitochondrial toxicity. The impacts of potentially differential cell- and tissue-specific significance of AgNP-induced mitochondrial dysfunction are also discussed.