999 resultados para pearlite growth
Evaluation of growth and changes in body composition following neonatal diagnosis of cystic fibrosis
Resumo:
Early deficits in nutritional status that might require specific treatment and early response to nutritional therapy were studied longitudinally in 25 infants with cystic fibrosis (CF) diagnosed by neonatal screening, using anthropometric and research body composition methodology, and evaluation of pancreatic function. At the time of confirmed diagnosis (mean 5.4 weeks), body mass, length, total body fat (TBF), and total body potassium (TBK) were all significantly reduced. Following diagnosis and commencement of therapy there was a normalization of weight, length, and TBK by 6-12 months of age, indicating catch-up growth. But in some individuals the response was incomplete, and as a group, mean total body fat remained significantly lower than normal at 1 year of age. Seven of 25 (28%) were pancreatic sufficient at diagnosis, and all but one had evidence of declining pancreatic function requiring the institution of pancreatic enzyme therapy during the next 1-9 months. The median age of commencement of enzyme therapy was 10 weeks (range 5 weeks to 11 months). These longitudinal assessments emphasize the dynamic changes occurring in absorptive function, body composition, and nutritional status following neonatal diagnosis of cystic fibrosis and may reflect previously described abnormalities of energy metabolism in this age group. Abnormal body composition is evident in most CF infants following diagnosis by neonatal screening but pancreatic damage may still be evolving. We suggest that early active nutritional therapy and surveillance for changes in pancreatic function are warranted in CF infants diagnosed by neonatal screening.
Resumo:
The aims of this study were to investigate outcome and to evaluate areas of potential ongoing concern after orthotopic liver transplantation (OLT) in children. Actuarial survival in relation to age and degree of undernutrition at the time of OLT was evaluated in 53 children (age 0.58-14.2 years) undergoing OLT for endstage liver disease. Follow-up studies of growth and quality of life were undertaken in those with a minimum follow-up period of 12 months (n = 26). The overall 3 year actuarial survival was 70%. Survival rates did not differ between age groups (actuarial 2 year survival for ages <1, 1-5 and >5 years were 70, 70 and 69% respectively) but did differ according to nutritional status at OLT (actuarial 2 year survival for children with Z scores for weight <-1 was 57%, >-1 was 95%; P = 0.004). Significant catch-up weight gain was observed by 18 months post-transplant, while height improved less rapidly. Quality of life (assessed by Vineland Adaptive Behaviour Scales incorporating socialization, daily living skills, communication and motor skills) was good (mean composite score 91 ± 19). All school-aged children except one were attending normal school. Two children had mild to moderate intellectual handicap related to post-operative intracerebral complications. Satisfactory long-term survival can be achieved after OLT in children regardless of age but the importance of pre-operative nutrition is emphasized. Survivors have an excellent chance of a good quality of life and of satisfactory catch-up weight gain and growth.
Resumo:
This article develops a method for analysis of growth data with multiple recaptures when the initial ages for all individuals are unknown. The existing approaches either impute the initial ages or model them as random effects. Assumptions about the initial age are not verifiable because all the initial ages are unknown. We present an alternative approach that treats all the lengths including the length at first capture as correlated repeated measures for each individual. Optimal estimating equations are developed using the generalized estimating equations approach that only requires the first two moment assumptions. Explicit expressions for estimation of both mean growth parameters and variance components are given to minimize the computational complexity. Simulation studies indicate that the proposed method works well. Two real data sets are analyzed for illustration, one from whelks (Dicathais aegaota) and the other from southern rock lobster (Jasus edwardsii) in South Australia.
Resumo:
Runx2-Cbfal, a Runt transcription factor, plays important roles during skeletal development. It is required for differentiation and function of osteoblasts. In its absence, chondrocyte hypertrophy is severely impaired and there is no vascularization of cartilage templates during skeletal development. These tissue-specific functions of Runx2 are likely to be dependent on its interaction with other proteins. We have therefore searched for proteins that may modulate the activity of Runx2. The yeast two-hybrid system was used to identify a groucho homologue, Grg5, as a Runx2-interacting protein. Grg5 enhances Runx2 activity in a cell culture-based assay and by analyses of postnatal growth in mice we demonstrate that Grg5 and Runx2 interact genetically. We also show that Runx2 haploinsufficiency in the absence of Grg5 results in a more severe delay in ossification of cranial sutures and fontanels than occurs with Runx2 haploinsufficiency on a wild-type background. Finally, we find shortening of the proliferative and hypertrophic zones, and expansion of the resting zone in the growth plates of Runx2(+/-)Grg5(-/-) mice that are associated with reduced Ihh expression and Indian hedgehog (Ihh) signaling. We therefore conclude that Grg5 enhances Runx2 activity in vivo.
Resumo:
Gene-targeted disruption of Grg5, a mouse homologue of Drosophila groucho (gro), results in postnatal growth retardation in mice. The growth defect, most striking in approximately half of the Grg5 null mice, occurs during the first 4-5 weeks of age, but most mice recover retarded growth later. We used the nonlinear mixed-effects model to fit the growth data of wild-type, heterozygous, and Grg5 null mice. On the basis of preliminary evidence suggesting an interaction between Grg5 and the transcription factor Cbfa1/Runx2, critical for skeletal development, we further investigated the skeleton in the mice. A long bone growth plate defect was identified, which included shorter zones of proliferative and hypertrophic chondrocytes and decreased trabecular bone formation. This decreased trabecular bone formation is likely caused by a reduced recruitment of osteoblasts into the growth plate region of Grg5 null mice. Like the growth defect, the growth plate and trabecular bone abnormality improved as the mice grew older. The growth plate defect was associated with reduced Indian hedgehog expression and signaling. We suggest that Grg5, a transcriptional coregulator, modulates the activities of transcription factors, such as Cbfa1/Runx2 in vivo to affect Ihh expression and the function of long bone growth plates.
Resumo:
The occurrence of a maximum in the percentage of intergranular fracture on the fracture surface during the transition from intermediate to low fatigue crack growth rates has been observed for a high strength steel. It is suggested that transgranular planar slip leading to slip localization is essential in promoting intergranular fracture when the cyclic plastic zone size becomes equal to the prior austenite grain size.
Resumo:
James (1991, Biometrics 47, 1519-1530) constructed unbiased estimating functions for estimating the two parameters in the von Bertalanffy growth curve from tag-recapture data. This paper provides unbiased estimating functions for a class of growth models that incorporate stochastic components and explanatory variables. a simulation study using seasonal growth models indicates that the proposed method works well while the least-squares methods that are commonly used in the literature may produce substantially biased estimates. The proposed model and method are also applied to real data from tagged rack lobsters to assess the possible seasonal effect on growth.
Resumo:
In the analysis of tagging data, it has been found that the least-squares method, based on the increment function known as the Fabens method, produces biased estimates because individual variability in growth is not allowed for. This paper modifies the Fabens method to account for individual variability in the length asymptote. Significance tests using t-statistics or log-likelihood ratio statistics may be applied to show the level of individual variability. Simulation results indicate that the modified method reduces the biases in the estimates to negligible proportions. Tagging data from tiger prawns (Penaeus esculentus and Penaeus semisulcatus) and rock lobster (Panulirus ornatus) are analysed as an illustration.
Resumo:
The von Bertalanffy growth model is extended to incorporate explanatory variables. The generalized model includes the switched growth model and the seasonal growth model as special cases, and can also be used to assess the tagging effect on growth. Distribution-free and consistent estimating functions are constructed for estimation of growth parameters from tag-recapture data in which age at release is unknown. This generalizes the work of James (1991, Biometrics 47 1519-1530) who considered the classical model and allowed for individual variability in growth. A real dataset from barramundi (Lates calcarifer) is analysed to estimate the growth parameters and possible effect of tagging on growth.
Resumo:
Records of shrimp growth and water quality made during 12 crops from each of 48 ponds, over a period of 6.5 years, were provided by a Queensland, Australia, commercial shrimp farm, These data were analysed with a new growth model derived from the Gompertz model. The results indicate that water temperature, mortality and pond age significantly affect growth rates. After 180 days, shrimp reach 34 g at constant 30 degrees C, but only 15 g after the same amount of time at 20 degrees C. Mortality, through thinning the density of shrimp in the ponds, increased the growth rate, but the effect is small. With continual production, growth rates at first remained steady, then appeared to decrease for the sixth and seventh crop, after which they have increased steadily with each crop. It appears that conservative pond management, together with a gradual improvement in husbandry techniques, particularly feed management, brought about this change. This has encouraging implications for the long-term sustainability of the farming methods used. The growth model can be used to predict productivity, and hence, profitability, of new aquaculture locations or new production strategies.
Resumo:
Background Vascular endothelial growth factor (VEGF) is known to play a major role in angiogenesis. A soluble form of Flt-1, a VEGF receptor, is potentially useful as an antagonist of VEGF, and accumulating evidence suggests the applicability of sFlt-1 in tumor suppression. In the present study, we have developed and tested strategies targeted specifically to VEGF for the treatment of ascites formation.Methods As an initial strategy, we produced recombinant sFLT-1 in the baculovirus expression system and used it as a trap to sequester VEGF in the murine ascites carcinoma model. The effect of the treatment on the weight of the animal, cell number, ascites volume and proliferating endothelial cells was studied. The second strategy involved, producing Ehrlich ascites tumor (EAT) cells stably transfected with vectors carrying cDNA encoding truncated form of Flt-1 and using these cells to inhibit ascites tumors in a nude mouse model. Results The sFLT-1 produced by the baculovirus system showed potent antiangiogenic activity as assessed by rat cornea and tube formation assay. sFLT-1 treatment resulted in reduced peritoneal angiogenesis with a concomitant decrease in tumor cell number, volume of ascites, amount of free VEGF and the number of invasive tumor cells as assayed by CD31 staining. EAT cells stably transfected with truncated form of Flt-1 also effectively reduced the tumor burden in nude mice transplanted with these cells, and demonstrated a reduction in ascites formation and peritoneal angiogenesis. Conclusions The inhibition of peritoneal angiogenesis and tumor growth by sequestering VEGF with either sFlt-1 gene expression by recombinant EAT cells or by direct sFLT-1 protein therapy is shown to comprise a potential therapy. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Sleepy cod Oxyeleotris lineolatus is a species of freshwater goby in demand in Australian markets by consumers of Asian origin. It is related to marble goby Oxyeleotris marmoratus, the most expensive freshwater food fish in Asia, which is cultured throughout southeast Asia in ponds and cages. The performance of sleepy cod in culture conditions was investigated to assess the viability of farming them in northern Australia. Sleepy cod fingerlings (62.8 +/- 0.8 mm total length and 2.56 +/- 0.095 g) were stocked into experimental ponds at 32,857 fish/ha, and grown out for 8 mo. Shelter was provided in each of three replicate ponds and was absent in three control ponds. The provision of shelter in juvenile growout was found to be of no benefit, although fish in ponds provided with shelter weighed slightly more per unit length than fish in ponds without shelter. Cannibalism was not a problem in growout, and survival was close to 100%. After the shelter trial was completed, fish were graded into large and small classes (three replicates of each), and grown out without shelter at the same density for 158 d. Following that, fish were again graded, and the largest 30% retained from growout at a density of 8,857 fish/ha (large, 198 +/-6.44 g) or 10,000 fish/ha (small, 48.9 +/-1.27 g). These were grown out for 188 d. Growth of selected stock at low densities was slower than earlier growth rates, although smaller fish gained weight more rapidly than larger fish. Growth rates were better than the only published data for marble goby. Further investigation into high density culture and different genotypes of sleepy cod needs to be undertaken to determine the viability of pond culture.
Resumo:
The influence of barley and oat grain supplements on hay dry matter intake (DMI), carcass components gain and meat quality in lambs fed a low quality basal diet was examined. Thirty five crossbred wether lambs (9 months of age) were divided into four groups. After adaptation to a basal diet of 85% oat hay and 15% lucerne hay for one week, an initial group of 11 was slaughtered. The weights of carcass components and digesta-free empty body weight (EBW) of this group was used to estimate the weight of carcass components of the other three experimental groups at the start of the experiment. The remaining three groups were randomly assigned to pens and fed ad libitum the basal diet alone (basal), basal with 300 g air dry barley grain (barley), basal with 300 g air dry oat grain (oat). Supplements were fed twice weekly (i.e., 900 g on Tuesday and 1200 g on Friday). After 13 weeks of feeding, animals were slaughtered and, at 24 h post-mortem meat quality and subcutaneous fat colour were measured. Samples of longissimus muscle were collected for determination of sarcomere length and meat tenderness. Hay DMI was reduced (P<0.01) by both barley and oat supplements. Lambs fed barley or oat had a higher and moderate digestibility of DM, and a higher intake of CP (P<0.05) and ME (P<0.01) than basal lambs. Final live weight of barley and oat lambs was higher (P<0.05) than basal, but this was not reflected in EBW or hot carcass weight. Lambs fed barley or oat had increases in protein (P<0.01) and water (P<0.001) in the carcass, but fat gain was not changed (P>0.05). There were no differences in eye muscle area or fat depth (total muscle and adipose tissue depth at 12th rib, 110 mm from midline; GR) among groups. The increased levels of protein and water components in the carcass of barley and oat fed lambs, associated with improved muscle production, were small and did not alter (P>0.05) any of the carcass/meat quality attributes compared to lambs fed a low quality forage diet. Feeding barley or oat grain at 0.9–1% of live weight daily to lambs consuming poor quality hay may not substantially improve carcass quality, but may be useful in maintaining body condition of lambs through the dry season for slaughter out of season
Resumo:
A recently developed radioimmunoassay (RIA) for measuring insulin-like growth factor (IGF-I) in a variety of fish species was used to investigate the correlation between growth rate and circulating IGF-I concentrations of barramundi (Lates calcarifer), Atlantic salmon (Salmo salar) and Southern Bluefin tuna (Thunnus maccoyii). Plasma IGF-I concentration significantly increased with increasing ration size in barramundi and IGF-I concentration was positively correlated to growth rates obtained in Atlantic salmon (r2=0.67) and barramundi (r2=0.65) when fed a variety of diet formulations. IGF-I was also positively correlated to protein concentration (r2=0.59). This evidence suggested that measuring IGF-I concentration may provide a useful tool for monitoring fish growth rate and also as a method to rapidly assess different aquaculture diets. However, no such correlation was demonstrated in the tuna study probably due to seasonal cooling of sea surface temperature shortly before blood was sampled. Thus, some recommendations for the design and sampling strategy of nutritional trials where IGF-I concentrations are measured are discussed