797 resultados para pavement
Resumo:
Reflective cracking in hot mix asphalt (HMA) overlays has been a common cause of poor pavement performance in Iowa for many years. Reflective cracks commonly occur in HMA overlays when deteriorated portland cement concrete is paved over with HMA. This results in HMA pavement surfaces with poor ride quality and increased transportation maintenance costs. To delay the formation of cracks in HMA overlays, the Iowa Department of Transportation (Iowa DOT) has begun to implement a crack-relief interlayer mix design specification. The crack-relief interlayer is an asphalt-rich, highly flexible HMA that can resist cracking in high strain loading conditions. In this project, the field performance of an HMA overlay using a one inch interlayer was compared to a conventional HMA overlay without an interlayer. Both test sections were constructed on US 169 in Adel, Iowa as part of an Iowa DOT overlay project. The laboratory performance of the interlayer mix design was assessed for resistance to cracking from repeated strains by using the four-point bending beam apparatus. An HMA using a highly polymer modified binder was designed and shown to meet the laboratory performance test criteria. The field performance of the overlay with the interlayer exceeded the performance of the conventional overlay that did not have the interlayer. After one winter season, 29 percent less reflective cracking was measured in the pavement section with the interlayer than the pavement section without the interlayer. The level of cracking severity was also reduced by using the interlayer in the overlay.
Resumo:
During the summer of 1963 the Materials Department noted the three to four ·year old concrete pavement on I-80 in Cass County was showing extensive surface cracking adjacent to joints and cracks. An examination of the pavement and a few cores from the cracked areas was made by the I.S.H.C. Materials Department and later by David Stark of the P.C.A. Additional surveys were conducted on other concrete pavement made with coarse aggregate from similar rock from two different sources. Blue-line cracking was found on some primary pavement and the indications of incipient cracks were seen on I-29 in Pottawattamie County, north of Council Bluffs. A good "D"-crack pattern is now evident. Surveys were then made of the entire Interstate concrete pavement. No other sections of Interstate were "D"-cracking, although some sections showed joint discoloration. None of these pavements, including the discolored sections, contained "D"-crack associated aggregates. At the same time as the Interstate survey additional pavements and sources were checked. Some "D"-cracking was noticed on certain sections of primary pavement 5-10 years old, in the vicinity of Waterloo and Cedar Rapids. The "D"-cracked pavement was from three aggregate sources, the Newton, Otis, and Burton Ave. quarries. Other pavements in this area that were older or from· different· coarse aggregate sources were not "D"-cracked. We believe that all the "D"-cracking is related, although dedolomitization is probably involved in the intermediate dolomite rocks.
Resumo:
Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.
Resumo:
Lane departure crashes are the single largest category of fatal and major injury crashes in Iowa. The Iowa Department of Transportation (DOT) estimates that 60 percent of roadway-related fatal crashes are lane departures and that 39 percent of Iowa’s fatal crashes are single-vehicle run-off-road (SVROR) crashes. Addressing roadway departure was identified as one of the top eight program strategies for the Iowa DOT in their Comprehensive Highway Safety Plan (CHSP). The goal is to reduce lane departure crashes and their consequences through lane departure-related design standards and policies including paved shoulders, centerline and shoulder rumble strips, pavement markings, signs, and median barriers. Lane-Departure Safety Countermeasures: Strategic Action Plan for the Iowa Department of Transportation outlines roadway countermeasures that can be used to address lane departure crashes. This guidance report was prepared by the Institute for Transportation (InTrans) at Iowa State University for the Iowa DOT. The content reflects input from and multiple reviews by both a technical advisory committee and other knowledgeable individuals with the Iowa DOT.
Resumo:
Many good maintenance practices are done routinely to ensure safe travel on low-volume local roads. In addition, there are many specific treatments that may go beyond the point of routine maintenance and in fact provide additional safety benefits with a relatively low price tag. The purpose of this publication is to try to assemble many of these treatments that are currently practiced in Iowa by local agencies into one, easy-to-reference handbook that not only provides some clarity to each treatment with photos and narrative, but also features references to agencies currently using that technique. Some strategies that are utilized by Iowa, other states, and are topics of research have also been included to allow the user more information about possible options. Even though some areas overlap, the strategies presented have been grouped together in the following areas: Signing and Delineation, Traffic "Calming," Pavement Marking and Rumble Strips/Stripes, Roadside and Clear Zone, Guardrail and Barriers, Lighting, Pavements and Shoulders, Intersections, Railroad Crossings, Bridges and Culverts, and Miscellaneous. The intention is to make this a “living” document, which will continue to be updated and expanded periodically as other existing practices are recognized or new practices come into being.
Resumo:
Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have been proven effective in mitigating these crashes, but these strips are commonly installed in paved shoulders adjacent to higher-volume roads owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing “rumble stripes,” which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. Candidate locations were selected from a list of paved local rural roads that were most recently listed in the top 5% of roads for run-off-road crashes in Iowa. Horizontal curves were the most favored locations for rumble stripe installation because they commonly experience roadway departure crashes. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge line rumble strips in Iowa. The project evaluated the effectiveness of “rumble stripes” in reducing run-off-road crashes and in improving the longevity and wet weather visibility of edge line markings. This project consists of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. This information is summarized in this report. The purpose of the second phase is to provide a more long-term assessment of the performance of the pavement markings, conduct preliminary crash assessments, and evaluate lane keeping. This will result in a forthcoming second report.
Resumo:
Well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). The recently completed Iowa Highway Research Board (IHRB) project TR-643 provided extensive insights into Iowa subsurface drainage practices and pavement subdrain outlet performance. However, the project TR-643 (Phase I) forensic testing and evaluation were carried out in a drought year and during the fall season in 2012. Based on the findings of IHRB Project TR-643, the Iowa DOT requested an expanded Phase II study to address several additional research needs: evaluate the seasonal variation effects (dry fall 2012 versus wet spring/summer 2013, etc.) on subdrain outlet condition and performance; investigate the characteristics of tufa formation in Iowa subdrain outlets; investigate the condition of composite pavement subdrain outlets; examine the effect of resurfacing/widening/rehabilitation on subdrain outlets (e.g., the effects of patching on subdrain outlet performance); and identify a suitable drain outlet protection mechanism (like a headwall) and design for Iowa subdrain outlets based on a review of practices adopted by nearby states. A detailed forensic test plan was developed and executed for inspecting the Iowa pavement subdrains in pursuit of fulfilling the Phase II study objectives. The observed outlets with blockage and the associated surface distresses in newly constructed jointed plain concrete pavements (JPCPs) were slightly higher during summer 2013 compared to fall 2012. However, these differences are not significant. Less tufa formation due to the recycled portland cement concrete (RPCC) base was observed with (a) the use of plastic outlet pipe without the gate screen–type rodent guard and (b) the use of blended RPCC and virgin aggregate materials. In hot-mix asphalt (HMA) over JPCP, moisture-related distress types (e.g., reflection cracking) were observed more near blocked drainage outlet locations than near “no blockage” outlet locations. This finding indicates that compromised drainage outlet performance could accelerate the development of moisture-related distresses in Iowa composite pavement systems. ****** Note: This report follows on work report in "Evaluating Roadway Subsurface Drainage Practices, 2013" http://publications.iowa.gov/14902/ Note: This record contains links to the 210 page full report as well as the 3 page tech transfer summary. The summary is NOT deposited separately.
Resumo:
Most bituminous adhesives or binders that are used for pavement materials are derived primarily from fossil fuels. With petroleum oil reserves becoming depleted and the drive to establish a bio-based economy, there is a push to produce binders from alternative sources, particularly from biorenewable resources. However, until now, no research has studied the applicability of utilizing bio-oils as a bitumen replacement (100% replacement) in the pavement industry. The main objective of this research was to test various properties of bio-oils in order to determine the applicability of using bio-oils as binders in the pavement industry. The overall conclusions about the applicability of using bio-oils as bio-binders in the pavement industry can be summarized as follows: 1. Bio-oils cannot be used as bio-binders/pavement materials without any heat pre-treatment/upgrading procedure. 2. Current testing standards and specifications, especially Superpave procedures, should be modified to comply with the properties of bio-binders. 3. The temperature range of the viscous behavior for bio-oils may be lower than that of bitumen binders by about 30°–40° C. 4. The rheological properties of the unmodified bio-binders vary in comparison to bitumen binders, but the rheological properties of these modified bio-binders change significantly upon adding polymer modifiers. 5. The high-temperature performance grade for the developed bio-binders may not vary significantly from that of the bitumen binders, but the low-temperature performance grade may vary significantly
Resumo:
If adequately designed and high quality material and good construction practices are used, portland cement concrete is very durable. This is demonstrated by the oldest pavement in Iowa (second oldest in the U.S.) paved in 1904, which performed well for 70 years without resurfacing. The design thickness is an important factor in both the performance and cost of pavement. The objective of this paper is to provide a 30-year performance evaluation of a pavement constructed to determine the required design thickness for low volume secondary roadways. In 1951 Greene County and the Iowa Highway Research Board of the Iowa Department of Transportation initiated a four-mile (6.4 km) demonstration project to evaluate thicknesses ranging from 4-1/2" (11.4 cm) to 6" (15.2 cm). The project, consisting of 10 research sections, was formed pavement placed on a gravel roadbed with very little preparation except for redistribution of the loose aggregate. Eight sections were non-reinforced except for centerline tie bars and no contraction joints were used. Mesh reinforcing and contraction joints spaced at 29' 7" (9.02 m) intervals were used in two 4-1/2" (11.4 cm) thick sections. The only air entrained section was non-reinforced. The pavement performed well over its 30-year life carrying a light volume of traffic and did not require major maintenance. There was substantial cracking with average slab length varying directly with thickness. The 4-1/2" (11.4 cm) thick non-air entrained, mesh-reinforced pavement with contraction joints has performed the best.
Resumo:
Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (ASR). The available alkali test, which is commonly used to measure fly ash alkali, takes approximately 35 days for execution and reporting. Hence, in many instances the fly ash has already been incorporated into concrete before the test results are available. This complicates the job of the fly ash marketing agencies and it leads to disputes with fly ash users who often are concerned with accepting projects that contain materials that fail to meet specification limits. The research project consisted of a lab study and a field study. The lab study focused on the available alkali test and how fly ash alkali content impacts common performance tests (mortar-bar expansion tests). Twenty-one fly ash samples were evaluated during the testing. The field study focused on the inspection and testing of selected, well documented pavement sites that contained moderately reactive fine aggregate and high-alkali fly ash. A total of nine pavement sites were evaluated. Two of the sites were control sites that did not contain fly ash. The results of the lab study indicated that the available alkali test is prone to experimental errors that cause poor agreement between testing labs. A strong (linear) relationship was observed between available alkali content and total alkali content of Class C fly ash. This relationship can be used to provide a quicker, more precise method of estimating the available alkali content. The results of the field study failed to link the use of high-alkali fly ash with the occurrence of ASR in the various concrete sites. Petrographic examination of the pavement cores indicated that Wayland sand is an ASR-sensitive aggregate. This was in good agreement with Iowa DOT field service records. It was recommended that preventative measures should be used when this source of sand is used in concrete mixtures.
Resumo:
This report covers the construction in 1961 of the soil-cement base and related pavement structure on Iowa 37 from Soldier to Dunlap, (F-861(6), Crawford, Harrison, Monona). The report also contains an account of the experimental work performed on the same road under research project HR-75.
Resumo:
Pavements constructed in Iowa during the period of the 1920's through the late 1940's were built with an integral curb. The purpose of the curb was to control drainage of water from the pavement surface in areas where runoff took place at a very rapid rate. It is for this reason that curbing is found on pavements constructed during this period. The curbing led the water flowing on the pavement surface to drainage outlets; this helped reduce erosion along the edge of the slab. The curbs have satisfactorily performed the job for which they were intended. The advent of bigger and faster vehicles has created a demand for changes in the design of pavements. Current designs provide wider driving surfaces with reduced grades which can better accommodate the wider cars and trucks. By present day design standards the narrow highways are inadequate and are being replaced or improved. The normal improvement procedure is to widen to 24 feet by providing additional driving surface at each edge of the pavement. Curbing is removed from the pavement so that the surface of the widening can be placed at the same level as that of the slab.
Resumo:
The basic purpose of this study was to determine if an expanded polystyrene insulating board could prevent subgrade freezing and thereby reduce frost heave. The insulating board was placed between a nine inch P. C. concrete slab and a frost-susceptible subgrade. In one section at the test site, selected backfill material was placed under the pavement. The P. C. pavement was later covered by asphalt surfacing. Thermocouples were installed for obtaining temperature recordings at various locations in the surfacing, concrete slab, subgrade and shoulders. This report contains graphs and illustrations showing temperature distributions for two years, as well as profile elevations and the results of moisture tests.
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper-combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100(d/D)^n is not justified. It is recommended that the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100 (d/D)n is not justified. It is recommended that. the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.