986 resultados para parasitic nematode
Resumo:
Using a combination of techniques including relative deprivation index developed by the Government, school performance, household survey and drawing of lots, a sample frame constituting of poverty areas of Mauritius was constructed and four test areas identified. Relevant haematological, parasitological and biochemical parameters of all school-going children living in the four test areas were determined so as to study the possibility of correlation between parasitic infections, plasma ferritin, haemoglobin concentration, white blood cells count, packed cells volume and blood group. It was found that there is a negative correlation between the number of parasites and haemoglobin concentration, packed cells volume of blood and degree of infestation, number of parasites and ferritin and number of parasites and age of subject. It has also been found that, children with blood group 'A' and blood group '0' tend to harbour the most parasites. As regards to storage iron depletion, this is significant only with hookworm infestation. Additionally it has been noted that hookworm infestation is directly related to age contrary to other parasitic infestations.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We present a data based statistical study on the effects of seasonal variations in the growth rates of the gastro-intestinal (GI) parasitic infection in livestock. The alluded growth rate is estimated through the variation in the number of eggs per gram (EPG) of faeces in animals. In accordance with earlier studies, our analysis too shows that rainfall is the dominant variable in determining EPG infection rates compared to other macro-parameters like temperature and humidity. Our statistical analysis clearly indicates an oscillatory dependence of EPG levels on rainfall fluctuations. Monsoon recorded the highest infection with a comparative increase of at least 2.5 times compared to the next most infected period (summer). A least square fit of the EPG versus rainfall data indicates an approach towards a super diffusive (i. e. root mean square displacement growing faster than the square root of the elapsed time as obtained for simple diffusion) infection growth pattern regime for low rainfall regimes (technically defined as zeroth level dependence) that gets remarkably augmented for large rainfall zones. Our analysis further indicates that for low fluctuations in temperature (true on the bulk data), EPG level saturates beyond a critical value of the rainfall, a threshold that is expected to indicate the onset of the nonlinear regime. The probability density functions (PDFs) of the EPG data show oscillatory behavior in the large rainfall regime (greater than 500 mm), the frequency of oscillation, once again, being determined by the ambient wetness (rainfall, and humidity). Data recorded over three pilot projects spanning three measures of rainfall and humidity bear testimony to the universality of this statistical argument. © 2013 Chattopadhyay and Bandyopadhyay.
Resumo:
Brazilian pepper (Schinus terebinthifolius) is an exotic shrub or small tree that has become well established as an invasive and highly competitive species through much of southern Florida. Love vine (Cassytha filiformis), a native parasitic plant, was noted parasitizing Brazilian pepper, apparently affecting its health. The objective of this study was to investigate the nature of this parasitic interaction in southern Florida. Brazilian pepper populations were studied to determine whether parasitism by love vine may affect growth and reproduction. Anatomical studies of love vine parasitizing Brazilian pepper determined physical aspects of the parasitic interaction at the cell and tissue level. Physiological aspects of this interaction were investigated to help describe love vine resource acquisition as a parasite on host Brazilian pepper plants, and as an autotrophic plant. An investigation of ecological aspects of this parasitic interaction was done to determine whether physical or biological aspects of habitats may contribute to love vine parasitism on Brazilian pepper. These studies indicated that: (1) parasitism by love vine significantly decreased growth and reproduction of Brazilian pepper plants; (2) anatomical and physiological investigations indicated that love vine was primarily a xylem parasite on Brazilian pepper, but that some assimilated carbon nutrients may also be acquired from the host; (3) love vine is autotrophic (i.e., hemiparasitic), but is totally dependent on its host for necessary resources; (4) the occurrence of love vine parasitism on Brazilian pepper is mediated by physical characters of the biological community. ^
Resumo:
Brazilian pepper (Schinus terebinthifolius) is an exotic shrub or small tree that has become well established as an invasive and highly competitive species through much of southern Florida. Love vine (Cassytha filiformis), a native parasitic plant, was noted parasitizing Brazilian pepper, apparently affecting its health. The objective of this study was to investigate the nature of this parasitic interaction in southern Florida. Brazilian pepper populations were studied to determine whether parasitism by love vine may affect growth and reproduction. Anatomical studies of love vine parasitizing Brazilian pepper determined physical aspects of the parasitic interaction at the cell and tissue level. Physiological aspects of this interaction were investigated to help describe love vine resource acquisition as a parasite on host Brazilian pepper plants, and as an autotrophic plant. An investigation of ecological aspects of this parasitic interaction was done to determine whether physical or biological aspects of habitats may contribute to love vine parasitism on Brazilian pepper. These studies indicated that: 1) parasitism by love vine significantly decreased growth and reproduction of Brazilian pepper plants; 2) anatomical and physiological investigations indicated that love vine was primarily a xylem parasite on Brazilian pepper, but that some assimilated carbon nutrients may also be acquired from the host; 3) love vine is autotrophic (i. e., hemiparasitic), but is totally dependent on its host for necessary resources; 4) the occurrence of love vine parasitism on Brazilian pepper is mediated by physical characters of the biological community.
Resumo:
Marine free-living nematode communities were studied at similar depths (~500m) at two sides of the Antarctic Peninsula, characterised by different environmental and oceanographic conditions. At the Weddell Sea side, benthic communities are influenced by cold deep-water formation and seasonal sea-ice conditions, whereas the Drake Passage side experiences milder oceanic conditions and strong dynamics of the Antarctic Circumpolar Current. Surface primary productivity contrasted with observed benthic pigment patterns and varied according to the area studied: chlorophyll a concentrations (as a proxy for primary production) were high in the Weddell Sea sediments, but low in the surface waters above; this pattern was reversed in the Drake Passage. Differences between areas were largely mirrored by the nematode communities: nematode densities peaked in Weddell stations and showed deeper vertical occurrence in the sediment, associated with deeper penetration of chlorophyll a. Generic composition did not differ markedly between both areas, but rather showed distinct community shifts with depth in the sediment.
Resumo:
Deep-water coral ecosystems are hot spots of biodiversity and provide habitats and refuges for several deep-sea species. However, their role in shaping the biodiversity of the surrounding open slopes is still poorly known. We investigated how meiofaunal biodiversity varies with and is related to the occurrence of deep-water living scleractinian corals and coral rubble in two deep-sea areas (the Rockall Bank, northeastern Atlantic) and the Santa Maria di Leuca (central Mediterranean). In both areas, replicated sampling on alive and dead coral areas and from the adjacent slope sediments without corals (at the same and increasing depths) allowed us to demonstrate that sediments surrounding the living corals and coral rubble were characterised by higher meiofaunal biodiversity (as number of higher taxa, and nematode species richness) than the slope sediments. Despite the soft sediments surrounding the living coral having a higher nutritional value than those not associated with corals, with the opposite seen for coral rubble, the presence of both alive and dead corals had a significant effect on nematode assemblages. Our data suggest that, due particularly to the effects on habitat heterogeneity/complexity, both living coral and coral rubble promoted higher biodiversity levels than in surrounding slope sediments. We conclude that the protection of deep-water corals can be crucial to preserve the biodiversity of surrounding open slopes, and that the protection of dead corals, a so-far almost neglected habitat in terms of biological conservation, can further contribute to the maintenance of a high deep-sea biodiversity along continental margins.
Resumo:
Acknowledgements This study was funded by a BBSRC studentship (MA Wenzel) and NERC grants NE/H00775X/1 and NE/D000602/1 (SB Piertney). The authors are grateful to Fiona Leckie, Andrew MacColl, Jesús Martínez-Padilla, François Mougeot, Steve Redpath, Pablo Vergara† and Lucy M.I. Webster for samples; Keliya Bai, Daisy Brickhill, Edward Graham, Alyson Little, Daniel Mifsud, Lizzie Molyneux and Mario Röder for fieldwork assistance; Gillian Murray-Dickson and Laura Watt for laboratory assistance; Heather Ritchie for helpful comments on manuscript drafts; and all estate owners, factors and keepers for access to field sites, most particularly Stuart Young and Derek Calder (Edinglassie), Simon Blackett, Jim Davidson and Liam Donald (Invercauld and Glas Choille), Richard Cooke and Fred Taylor† (Invermark) and T. Helps (Catterick).
Resumo:
The two potato cyst nematode species, Globodera pallida and G. rostochiensis, are among the most important pests of potato. PCN are difficult to manage, while the two species respond differently to the main control methods. An increase in the incidence of G. pallida had been reported and is generally attributed to greater effectiveness of control measures against G. rostochiensis. The status of PCN in Ireland was studied using PCR. The results demonstrated qPCR to be an efficient means of high-throughput PCN sampling, being able to accurately identify both species in mixed-species populations. Species discrimination using qPCR revealed an increase in the incidence of G. pallida in Ireland in the absence of G. pallida-selective control measures. The population dynamics of G. pallida and G. rostochiensis in Ireland were studied in mixed- and single-species competition assays in vivo. G. pallida proved to be the more successful species, with greater multiplication in mixed- than single-species populations, with G. rostochiensis showing the opposite. This effect was similarly observed in staggered inoculation trials and population proportion trials. It was hypothesised that the greater G. pallida competitiveness could be attributed to its later hatch. G. pallida exhibited a later peak in hatching activity and more prolonged hatch, relative to G. rostochiensis. G. rostochiensis hatch was significantly reduced in mixedspecies hatching assays. G. pallida hatch was significantly higher when hatch was induced in potato root leachates containing G. rostochiensis-specific compounds, indicating that G. pallida hatch is stimulated upon perception of G. rostochiensis–derived compounds. Rhizotron studies revealed that root damage, caused by feeding of the early-hatching G. rostochiensis, resulted in increased lateral root proliferation and significantly increased G. pallida multiplication. Split-root trials indicated a significant G. pallida-induced ISR effect. G. rostochiensis multiplication was significantly reduced in split-root rhizotrons when G. pallida colonised roots before or after G. rostochiensis infection.