853 resultados para parallel execution
Resumo:
The multiprocessor task graph scheduling problem has been extensively studied asacademic optimization problem which occurs in optimizing the execution time of parallelalgorithm with parallel computer. The problem is already being known as one of the NPhardproblems. There are many good approaches made with many optimizing algorithmto find out the optimum solution for this problem with less computational time. One ofthem is branch and bound algorithm.In this paper, we propose a branch and bound algorithm for the multiprocessor schedulingproblem. We investigate the algorithm by comparing two different lower bounds withtheir computational costs and the size of the pruned tree.Several experiments are made with small set of problems and results are compared indifferent sections.
Resumo:
In order to achieve the high performance, we need to have an efficient scheduling of a parallelprogram onto the processors in multiprocessor systems that minimizes the entire executiontime. This problem of multiprocessor scheduling can be stated as finding a schedule for ageneral task graph to be executed on a multiprocessor system so that the schedule length can be minimize [10]. This scheduling problem is known to be NP- Hard.In multi processor task scheduling, we have a number of CPU’s on which a number of tasksare to be scheduled that the program’s execution time is minimized. According to [10], thetasks scheduling problem is a key factor for a parallel multiprocessor system to gain betterperformance. A task can be partitioned into a group of subtasks and represented as a DAG(Directed Acyclic Graph), so the problem can be stated as finding a schedule for a DAG to beexecuted in a parallel multiprocessor system so that the schedule can be minimized. Thishelps to reduce processing time and increase processor utilization. The aim of this thesis workis to check and compare the results obtained by Bee Colony algorithm with already generatedbest known results in multi processor task scheduling domain.
Resumo:
“Biosim” is a simulation software which works to simulate the harvesting system.This system is able to design a model for any logistic problem with the combination of several objects so that the artificial system can show the performance of an individual model. The system will also describe the efficiency, possibility to be chosen for real life application of that particular model. So, when any one wish to setup a logistic model like- harvesting system, in real life he/she may be noticed about the suitable prostitution for his plants and factories as well as he/she may get information about the least number of objects, total time to complete the task, total investment required for his model, total amount of noise produced for his establishment in advance. It will produce an advance over view for his model. But “Biosim” is quite slow .As it is an object based system, it takes long time to make its decision. Here the main task is to modify the system so that it can work faster than the previous. So, the main objective of this thesis is to reduce the load of “Biosim” by making some modification of the original system as well as to increase its efficiency. So that the whole system will be faster than the previous one and performs more efficiently when it will be applied in real life. Theconcept is to separate the execution part of ”Biosim” form its graphical engine and run this separated portion in a third generation language platform. C++ is chosenhere as this external platform. After completing the proposed system, results with different models have been observed. The results show that, for any type of plants of fields, for any number of trucks, the proposed system is faster than the original system. The proposed system takes at least 15% less time “Biosim”. The efficiency increase with the complexity of than the original the model. More complex the model, more efficient the proposed system is than original “Biosim”.Depending on the complexity of a model, the proposed system can be 56.53 % faster than the original “Biosim”.
Resumo:
In the domain of aerospace aftermarkets, which often has long supply chains that feed into the maintenance of aircraft, contracts are used to establish agreements between aircraft operators and maintenance suppliers. However, violations at the bottom of the supply chain (part suppliers) can easily cascade to the top (aircraft operators), making it difficult to determine the source of the violation, and seek to address it. In this context, we have developed a global monitoring architecture that ensures the detection of norm violations and generates explanations for the origin of violations. In this paper, we describe the implementation and deployment of a global monitor in the aerospace domain of [8] and show how it generates explanations for violations within the maintenance supply chain. We show how these explanations can be used not only to detect violations at runtime, but also to uncover potential problems in contracts before their deployment, thus improving them.
Resumo:
Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.