995 resultados para oral pathogens
The effect of clay mineralogy on the oral bioaccessibility of nickel in soils overlying basalt lavas
The effect of clay mineralogy on the oral bioaccessibility of nickel in soils overlying basalt lavas
Resumo:
Malignant Triton tumor (MTT) is a malignant peripheral nerve sheath tumor showing rhabdomyoblastic differentiation. It is considered a high-grade neoplasm with poor outcome. This report describes an MTT appearing in the oral cavity. On histologic examination the encapsulated lesion was composed of interlacing fascicles of spindle cells and scattered, large, strap-like pleomorphic cells with abundant eosinophilic cytoplasm. No cross striations were seen. Examination of levels through the tissue showed a total of only 4 normal mitoses and no necrosis. Immunohistochemistry demonstrated diffuse S100 positivity in the spindle cells. The large pleomorphic cells were weakly positive for alpha-sarcomeric actin and myoglobin, although variably but strongly positive for desmin. Management involved a small en bloc resection of the maxilla. After 33 months there was no sign of recurrence or distant metastasis. It was concluded that low-grade variants of MTT occur that do not have an aggressive clinical course.
Resumo:
Background: The oral cavity is an ideal environment for colonisation by micro-organisms. A first line of defence against microbial infection is the secretion of broad spectrum host defence peptides (HDPs). In the current climate of antibiotic resistance, exploiting naturally occurring HDPs or synthetic derivatives (mimetics) to combat infection is particularly appealing. The human cathelicidin, LL-37 is one such HDP expressed ubiquitously by epithelial cells and neutrophils. LL-37 exhibits the ability to bind lipopolysaccharide (LPS) and displays broad spectrum activity against a wide range of bacteria. The current study focuses on truncation of LL-37 and defining the antimicrobial and LPS binding activity of the resultant mimetics. Objectives: To assess the antimicrobial and LPS binding activity of LL-37 and three truncated mimetics (KE-18, EF-14 and KR-12). Methods: Peptides were synthesised in-house by Fmoc solid phase peptide synthesis or obtained commercially. Antimicrobial activity was determined using a radial diffusion assay and ability to bind LPS was determined by indirect ELISA. Results: LL-37 and mimetics displayed antimicrobial activity against Streptococcus mutans and Enterococcus Faecalis. KE-18 and KR-12 were shown to possess antimicrobial activity against both pathogens whereas EF-14 was the least antimicrobial. In terms of LPS binding, KE-18 and KR-12 were both effective whereas EF-14 showed the least activity of the three mimetics. Conclusion: Truncation of LL-37 can yield peptides which retain antimicrobial activities and have the ability to bind LPS. Interestingly in some cases the truncation of LL-37 produced mimetics with greater potency than the parent molecule in terms of antimicrobial activity and LPS binding. This work was funded by DEL and the Diabetes Wellness Foundation.
Resumo:
Background: Candidal species, particularly Candida albicans are common pathogens in the oral cavity and perioral region. Many of the manifestations of candidiasis are associated with the formation of Candida biofilms on host surfaces and/or implanted biomaterials. Biofilms are clinically important due to their increased resistance to therapeutic intervention and the ability of cells within the biofilm to withstand host immune defences.
Objectives: The present study was designed to investigate the antifungal activity of two peptides found in skin secretions of the African volcano frog (Xenopus amieti) against the type strain of C. albicans NCTC 3179.
Methods: The antifungal activity of magainin-AM1 and peptide glycine-leucine-amide (PGLa-AM1) against C. albicans NCTC 3179 was studied in both planktonic and biofilm forms. Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of magainin-AM1 and PGLa-AM1 against planktonic C. albicans. Time kill assays were used to determine the time dependent fungicidal action of the peptides at both 4oC and 37oC. A 96 well microtitre plate model for candidal biofilm formation was employed to study the ability of the peptides to disrupt the early biofilm development (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm formation was determined quantitatively using the crystal violet assay.
Results: Both magainin-AM1 and PGLa-AM1 demonstrated inhibitory activity against Candida albicans, with MIC values of 24.3 uM and 7.5uM respectively. Time-kill assays revealed bactericidal activity of both peptides at 37oC and 4oC. Magainin-AM1 and PGLa-AM1 inhibited biofilm formation in microtitre plate assays. The peptides were particularly effective during early biofilm establishment when compared with fluconazole treatment.
Conclusions: Magainin-AM1 and PGLa-AM1 are active against C albicans in both planktonic and biofilm forms. Further testing of this peptide family against candidal biofilms is recommended.
Resumo:
Objectives: Unlike adult dermal wounds, the oral mucosa demonstrates preferential healing characterized by rapid remodeling and re-epithelialisation, with minimal scar formation. Secretory leukocyte protease inhibitor (SLPI) is an epithelial-derived factor with potential for promoting scarless repair. The aims of this study were to: (i) investigate the directed migratory (chemotaxis) response of oral and skin fibroblasts to various concentrations of SLPI; and (ii) compare migratory speed of the two cell types. Methods: Paired oral and skin fibroblasts were seeded at 2x104 cells in six well plates containing glass coverslips, and cultured in DMEM supplemented with 10% FCS for 48hours. Following a period of serum starvation (18hours in DMEM plus 0.5% BSA), coverslips were incorporated within a Dunn chemotaxis chamber containing DMEM with 0.5% BSA +/- SLPI gradients at 0.5, 1 or 2µM concentrations. Using microscopy, the migratory behaviour of cells was digitally captured every 10mins for 18hours, traced with JCell tracking software and resulting co-ordinates statistically analysed using Mathmatica software. Results: At all concentrations SLPI was a significant chemoattractant (p<0.01) for both cell types. However, skin fibroblasts migrated significantly faster than oral cells at each SLPI concentration, with greatest effect observed at the highest dose (skin: 32.0±0.47µm/hr, oral: 13.6±0.23µm/hr). Conclusion: SLPI is a chemoattractant for both oral and skin fibroblasts, and may play an important role in fibroblast recruitment during wound healing. This work was funded by the R&D Office, N.Ireland.
Resumo:
This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings show that the immunobead array method was capable of detecting as low as 1 CFU of the pathogens spiked in the culture media after being cultured for 24 hours for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1 CFU of the pathogens spiked in the food samples after being cultured for 24 hours in the case of Salmonella spp., and L. monocytogenes and 48 hours in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 hours, whereas the conventional ISO protocols for the same pathogens take 90-144 hours. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing.
Resumo:
Enterobacter species commonly occur in the environment and are recognized as opportunistic human pathogens in clinical settings. However, with the exception of Enterobacter sakazakii (Cronobacter), Enterobacter species are not normally considered foodborne pathogens. Cronobacter are particularly associated with illness in infants, particularly within the first 3 months after birth. Therefore, although Cronobacter are found in a wide range of fresh and dried food materials, it is their contamination of the infant formula production chain that is the major cause for concern. Cronobacter are noted for their ability to survive during desiccation and their persistence in dried infant food for at least 2 years.