932 resultados para optimization method
Resumo:
A new optical design strategy for rotational aspheres using very few parameters is presented. It consists of using the SMS method to design the aspheres embedded in a system with additional simpler surfaces (such as spheres, parabolas or other conics) and optimizing the free-parameters. Although the SMS surfaces are designed using only meridian rays, skew rays have proven to be well controlled within the optimization. In the end, the SMS surfaces are expanded using Forbes series and then a second optimization process is carried out with these SMS surfaces as a starting point. The method has been applied to a telephoto lens design in the SWIR band, achieving ultra-compact designs with an excellent performance.
Resumo:
Resumen El diseño de sistemas ópticos, entendido como un arte por algunos, como una ciencia por otros, se ha realizado durante siglos. Desde los egipcios hasta nuestros días los sistemas de formación de imagen han ido evolucionando así como las técnicas de diseño asociadas. Sin embargo ha sido en los últimos 50 años cuando las técnicas de diseño han experimentado su mayor desarrollo y evolución, debido, en parte, a la aparición de nuevas técnicas de fabricación y al desarrollo de ordenadores cada vez más potentes que han permitido el cálculo y análisis del trazado de rayos a través de los sistemas ópticos de forma rápida y eficiente. Esto ha propiciado que el diseño de sistemas ópticos evolucione desde los diseños desarrollados únicamente a partir de la óptica paraxial hasta lo modernos diseños realizados mediante la utilización de diferentes técnicas de optimización multiparamétrica. El principal problema con el que se encuentra el diseñador es que las diferentes técnicas de optimización necesitan partir de un diseño inicial el cual puede fijar las posibles soluciones. Dicho de otra forma, si el punto de inicio está lejos del mínimo global, o diseño óptimo para las condiciones establecidas, el diseño final puede ser un mínimo local cerca del punto de inicio y lejos del mínimo global. Este tipo de problemática ha llevado al desarrollo de sistemas globales de optimización que cada vez sean menos sensibles al punto de inicio de la optimización. Aunque si bien es cierto que es posible obtener buenos diseños a partir de este tipo de técnicas, se requiere de muchos intentos hasta llegar a la solución deseada, habiendo un entorno de incertidumbre durante todo el proceso, puesto que no está asegurado el que se llegue a la solución óptima. El método de las Superficies Múltiples Simultaneas (SMS), que nació como una herramienta de cálculo de concentradores anidólicos, se ha demostrado como una herramienta también capaz utilizarse para el diseño de sistemas ópticos formadores de imagen, aunque hasta la fecha se ha utilizado para el diseño puntual de sistemas de formación de imagen. Esta tesis tiene por objeto presentar el SMS como un método que puede ser utilizado de forma general para el diseño de cualquier sistema óptico de focal fija o v afocal con un aumento definido así como una herramienta que puede industrializarse para ayudar al diseñador a afrontar de forma sencilla el diseño de sistemas ópticos complejos. Esta tesis está estructurada en cinco capítulos: El capítulo 1, es un capítulo de fundamentos donde se presentan los conceptos fundamentales necesarios para que el lector, aunque no posea una gran base en óptica formadora de imagen, pueda entender los planteamientos y resultados que se presentan en el resto de capítulos El capitulo 2 aborda el problema de la optimización de sistemas ópticos, donde se presenta el método SMS como una herramienta idónea para obtener un punto de partida para el proceso de optimización. Mediante un ejemplo aplicado se demuestra la importancia del punto de partida utilizado en la solución final encontrada. Además en este capítulo se presentan diferentes técnicas que permiten la interpolación y optimización de las superficies obtenidas a partir de la aplicación del SMS. Aunque en esta tesis se trabajará únicamente utilizando el SMS2D, se presenta además un método para la interpolación y optimización de las nubes de puntos obtenidas a partir del SMS3D basado en funciones de base radial (RBF). En el capítulo 3 se presenta el diseño, fabricación y medidas de un objetivo catadióptrico panorámico diseñado para trabajar en la banda del infrarrojo lejano (8-12 μm) para aplicaciones de vigilancia perimetral. El objetivo presentado se diseña utilizando el método SMS para tres frentes de onda de entrada utilizando cuatro superficies. La potencia del método de diseño utilizado se hace evidente en la sencillez con la que este complejo sistema se diseña. Las imágenes presentadas demuestran cómo el prototipo desarrollado cumple a la perfección su propósito. El capítulo 4 aborda el problema del diseño de sistemas ópticos ultra compactos, se introduce el concepto de sistemas multicanal, como aquellos sistemas ópticos compuestos por una serie de canales que trabajan en paralelo. Este tipo de sistemas resultan particularmente idóneos para él diseño de sistemas afocales. Se presentan estrategias de diseño para sistemas multicanal tanto monocromáticos como policromáticos. Utilizando la novedosa técnica de diseño que en este capítulo se presenta el diseño de un telescopio de seis aumentos y medio. En el capítulo 5 se presenta una generalización del método SMS para rayos meridianos. En este capítulo se presenta el algoritmo que debe utilizarse para el diseño de cualquier sistema óptico de focal fija. La denominada optimización fase 1 se vi introduce en el algoritmo presentado de forma que mediante el cambio de las condiciones iníciales del diseño SMS que, aunque el diseño se realice para rayos meridianos, los rayos skew tengan un comportamiento similar. Para probar la potencia del algoritmo desarrollado se presenta un conjunto de diseños con diferente número de superficies. La estabilidad y potencia del algoritmo se hace evidente al conseguirse por primera vez el diseño de un sistema de seis superficies diseñado por SMS. vii Abstract The design of optical systems, considered an art by some and a science by others, has been developed for centuries. Imaging optical systems have been evolving since Ancient Egyptian times, as have design techniques. Nevertheless, the most important developments in design techniques have taken place over the past 50 years, in part due to the advances in manufacturing techniques and the development of increasingly powerful computers, which have enabled the fast and efficient calculation and analysis of ray tracing through optical systems. This has led to the design of optical systems evolving from designs developed solely from paraxial optics to modern designs created by using different multiparametric optimization techniques. The main problem the designer faces is that the different optimization techniques require an initial design which can set possible solutions as a starting point. In other words, if the starting point is far from the global minimum or optimal design for the set conditions, the final design may be a local minimum close to the starting point and far from the global minimum. This type of problem has led to the development of global optimization systems which are increasingly less sensitive to the starting point of the optimization process. Even though it is possible to obtain good designs from these types of techniques, many attempts are necessary to reach the desired solution. This is because of the uncertain environment due to the fact that there is no guarantee that the optimal solution will be obtained. The Simultaneous Multiple Surfaces (SMS) method, designed as a tool to calculate anidolic concentrators, has also proved useful for the design of image-forming optical systems, although until now it has occasionally been used for the design of imaging systems. This thesis aims to present the SMS method as a technique that can be used in general for the design of any optical system, whether with a fixed focal or an afocal with a defined magnification, and also as a tool that can be commercialized to help designers in the design of complex optical systems. The thesis is divided into five chapters. Chapter 1 establishes the basics by presenting the fundamental concepts which the reader needs to acquire, even if he/she doesn‟t have extensive knowledge in the field viii of image-forming optics, in order to understand the steps taken and the results obtained in the following chapters. Chapter 2 addresses the problem of optimizing optical systems. Here the SMS method is presented as an ideal tool to obtain a starting point for the optimization process. The importance of the starting point for the final solution is demonstrated through an example. Additionally, this chapter introduces various techniques for the interpolation and optimization of the surfaces obtained through the application of the SMS method. Even though in this thesis only the SMS2D method is used, we present a method for the interpolation and optimization of clouds of points obtained though the SMS3D method, based on radial basis functions (RBF). Chapter 3 presents the design, manufacturing and measurement processes of a catadioptric panoramic lens designed to work in the Long Wavelength Infrared (LWIR) (8-12 microns) for perimeter surveillance applications. The lens presented is designed by using the SMS method for three input wavefronts using four surfaces. The powerfulness of the design method used is revealed through the ease with which this complex system is designed. The images presented show how the prototype perfectly fulfills its purpose. Chapter 4 addresses the problem of designing ultra-compact optical systems. The concept of multi-channel systems, such as optical systems composed of a series of channels that work in parallel, is introduced. Such systems are especially suitable for the design of afocal systems. We present design strategies for multichannel systems, both monochromatic and polychromatic. A telescope designed with a magnification of six-and-a-half through the innovative technique exposed in this chapter is presented. Chapter 5 presents a generalization of the SMS method for meridian rays. The algorithm to be used for the design of any fixed focal optics is revealed. The optimization known as phase 1 optimization is inserted into the algorithm so that, by changing the initial conditions of the SMS design, the skew rays have a similar behavior, despite the design being carried out for meridian rays. To test the power of the developed algorithm, a set of designs with a different number of surfaces is presented. The stability and strength of the algorithm become apparent when the first design of a system with six surfaces if obtained through the SMS method.
Resumo:
El diseño y desarrollo de sistemas de suspensión para vehículos se basa cada día más en el diseño por ordenador y en herramientas de análisis por ordenador, las cuales permiten anticipar problemas y resolverlos por adelantado. El comportamiento y las características dinámicas se calculan con precisión, bajo coste, y recursos y tiempos de cálculo reducidos. Sin embargo, existe una componente iterativa en el proceso, que requiere la definición manual de diseños a través de técnicas “prueba y error”. Esta Tesis da un paso hacia el desarrollo de un entorno de simulación eficiente capaz de simular, analizar y evaluar diseños de suspensiones vehiculares, y de mejorarlos hacia la solución optima mediante la modificación de los parámetros de diseño. La modelización mediante sistemas multicuerpo se utiliza aquí para desarrollar un modelo de autocar con 18 grados de libertad, de manera detallada y eficiente. La geometría y demás características de la suspensión se ajustan a las del vehículo real, así como los demás parámetros del modelo. Para simular la dinámica vehicular, se utiliza una formulación multicuerpo moderna y eficiente basada en las ecuaciones de Maggi, a la que se ha incorporado un visor 3D. Así, se consigue simular maniobras vehiculares en tiempos inferiores al tiempo real. Una vez que la dinámica está disponible, los análisis de sensibilidad son cruciales para una optimización robusta y eficiente. Para ello, se presenta una técnica matemática que permite derivar las variables dinámicas dentro de la formulación, de forma algorítmica, general, con la precisión de la maquina, y razonablemente eficiente: la diferenciación automática. Este método propaga las derivadas con respecto a las variables de diseño a través del código informático y con poca intervención del usuario. En contraste con otros enfoques en la bibliografía, generalmente particulares y limitados, se realiza una comparación de librerías, se desarrolla una formulación híbrida directa-automática para el cálculo de sensibilidades, y se presentan varios ejemplos reales. Finalmente, se lleva a cabo la optimización de la respuesta dinámica del vehículo citado. Se analizan cuatro tipos distintos de optimización: identificación de parámetros, optimización de la maniobrabilidad, optimización del confort y optimización multi-objetivo, todos ellos aplicados al diseño del autocar. Además de resultados analíticos y gráficos, se incluyen algunas consideraciones acerca de la eficiencia. En resumen, se mejora el comportamiento dinámico de vehículos por medio de modelos multicuerpo y de técnicas de diferenciación automática y optimización avanzadas, posibilitando un ajuste automático, preciso y eficiente de los parámetros de diseño. ABSTRACT Each day, the design and development of vehicle suspension systems relies more on computer-aided design and computer-aided engineering tools, which allow anticipating the problems and solving them ahead of time. Dynamic behavior and characteristics are thus simulated accurately and inexpensively with moderate computational times and resources. There is, however, an iterative component in the process, which involves the manual definition of designs in a trialand-error manner. This Thesis takes a step towards the development of an efficient simulation framework capable of simulating, analyzing and evaluating vehicle suspension designs, and automatically improving them by varying the design parameters towards the optimal solution. The multibody systems approach is hereby used to model a three-dimensional 18-degrees-of-freedom coach in a comprehensive yet efficient way. The suspension geometry and characteristics resemble the ones from the real vehicle, as do the rest of vehicle parameters. In order to simulate vehicle dynamics, an efficient, state-of-the-art multibody formulation based on Maggi’s equations is employed, and a three-dimensional graphics viewer is developed. As a result, vehicle maneuvers can be simulated faster than real-time. Once the dynamics are ready, a sensitivity analysis is crucial for a robust optimization. To that end, a mathematical technique is introduced, which allows differentiating the dynamic variables within the multibody formulation in a general, algorithmic, accurate to machine precision, and reasonably efficient way: automatic differentiation. This method propagates the derivatives with respect to the design parameters throughout the computer code, with little user interaction. In contrast with other attempts in the literature, mostly not generalpurpose, a benchmarking of libraries is carried out, a hybrid direct-automatic differentiation approach for the computation of sensitivities is developed, and several real-life examples are analyzed. Finally, a design optimization process of the aforementioned vehicle is carried out. Four different types of dynamic response optimization are presented: parameter identification, handling optimization, ride comfort optimization and multi-objective optimization; all of which are applied to the design of the coach example. Together with analytical and visual proof of the results, efficiency considerations are made. In summary, the dynamic behavior of vehicles is improved by using the multibody systems approach, along with advanced differentiation and optimization techniques, enabling an automatic, accurate and efficient tuning of design parameters.
Resumo:
Stochastic model updating must be considered for quantifying uncertainties inherently existing in real-world engineering structures. By this means the statistical properties,instead of deterministic values, of structural parameters can be sought indicating the parameter variability. However, the implementation of stochastic model updating is much more complicated than that of deterministic methods particularly in the aspects of theoretical complexity and low computational efficiency. This study attempts to propose a simple and cost-efficient method by decomposing a stochastic updating process into a series of deterministic ones with the aid of response surface models and Monte Carlo simulation. The response surface models are used as surrogates for original FE models in the interest of programming simplification, fast response computation and easy inverse optimization. Monte Carlo simulation is adopted for generating samples from the assumed or measured probability distributions of responses. Each sample corresponds to an individual deterministic inverse process predicting the deterministic values of parameters. Then the parameter means and variances can be statistically estimated based on all the parameter predictions by running all the samples. Meanwhile, the analysis of variance approach is employed for the evaluation of parameter variability significance. The proposed method has been demonstrated firstly on a numerical beam and then a set of nominally identical steel plates tested in the laboratory. It is found that compared with the existing stochastic model updating methods, the proposed method presents similar accuracy while its primary merits consist in its simple implementation and cost efficiency in response computation and inverse optimization.
Resumo:
In this paper some mathematical programming models are exposed in order to set the number of services on a specified system of bus lines, which are intended to assist high demand levels which may arise because of the disruption of Rapid Transit services or during the celebration of massive events. By means of this model two types of basic magnitudes can be determined, basically: a) the number of bus units assigned to each line and b) the number of services that should be assigned to those units. In these models, passenger flow assignment to lines can be considered of the system optimum type, in the sense that the assignment of units and of services is carried out minimizing a linear combination of operation costs and total travel time of users. The models consider delays experienced by buses as a consequence of the get in/out of the passengers, queueing at stations and the delays that passengers experience waiting at the stations. For the case of a congested strategy based user optimal passenger assignment model with strict capacities on the bus lines, the use of the method of successive averages is shown.
Resumo:
La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.
Resumo:
The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.
Resumo:
Correct modeling of the equivalent circuits regarding solar cell and panels is today an essential tool for power optimization. However, the parameter extraction of those circuits is still a quite difficult task that normally requires both experimental data and calculation procedures, generally not available to the normal user. This paper presents a new analytical method that easily calculates the equivalent circuit parameters from the data that manufacturers usually provide. The analytical approximation is based on a new methodology, since methods developed until now to obtain the aforementioned equivalent circuit parameters from manufacturer's data have always been numerical or heuristic. Results from the present method are as accurate as the ones resulting from other more complex (numerical) existing methods in terms of calculation process and resources.
Resumo:
In this paper a summary of the methods presently used for optimization of prestressed concrete bridge decks is given. By means of linear optimization the sizes of the prestressing cables with a given fixed geometry are obtained. This simple procedure of linear optimization is also used to obtain the ‘best’ cable profile, by combining a series of feasible cable profiles. The results are compared with the ones obtained by other researchers. A step ahead in the field of optimization of prestressed bridge decks is the simultaneous search of the geometry and size of the prestressing cables. A non-linear programming for optimization is used, namely, ‘the steepest gradient method’. The results obtained are compared with the ones computed previously by means of linear programming techniques. Finally, the general problem of structural optimization is considered. This problem consists in finding the sizes and geometries of the prestressing cables as well as the longitudinal variation of the concrete section.
Resumo:
Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.
Resumo:
An inverse optimization strategy was developed to determine the single crystal properties from experimental results of the mechanical behavior of polycrystals. The polycrystal behavior was obtained by means of the finite element simulation of a representative volume element of the microstructure in which the dominant slip and twinning systems were included in the constitutive equation of each grain. The inverse problem was solved by means of the Levenberg-Marquardt method, which provided an excellent fit to the experimental results. The iterative optimization process followed a hierarchical scheme in which simple representative volume elements were initially used, followed by more realistic ones to reach the final optimum solution, leading to important reductions in computer time. The new strategy was applied to identify the initial and saturation critical resolved shear stresses and the hardening modulus of the active slip systems and extension twinning in a textured AZ31 Mg alloy. The results were in general agreement with the data in the literature but also showed some differences. They were partially explained because of the higher accuracy of the new optimization strategy but it was also shown that the number of independent experimental stress-strain curves used as input is critical to reach an accurate solution to the inverse optimization problem. It was concluded that at least three independent stress-strain curves are necessary to determine the single crystal behavior from polycrystal tests in the case of highly textured Mg alloys.
Resumo:
In recent years, the increasing sophistication of embedded multimedia systems and wireless communication technologies has promoted a widespread utilization of video streaming applications. It has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week watching online video through social media, business websites, and video streaming sites. Video applications have already been blended into people daily life. Traditionally, video streaming research has focused on performance improvement, namely throughput increase and response time reduction. However, most mobile devices are battery-powered, a technology that grows at a much slower pace than either multimedia or hardware developments. Since battery developments cannot satisfy expanding power demand of mobile devices, research interests on video applications technology has attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery energy budget becomes a major research challenge. In addition, next generation video standards impel to diversification and personalization. Therefore, it is desirable to have mechanisms to implement energy optimizations with greater flexibility and scalability. In this context, the main goal of this dissertation is to find an energy management and optimization mechanism to reduce the energy consumption of video decoders based on the idea of functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off between energy consumption and video quality. Functional-oriented reconfiguration takes advantage of the similarities among standards to build video decoders reconnecting existing functional units. If a feedback channel from the decoder to the encoder is available, the former can signal the latter changes in either the encoding parameters or the encoding algorithms for energy-saving adaption. The proposed energy optimization and management mechanism is carried out at the decoder end. This mechanism consists of an energy-aware manager, implemented as an additional block of the reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback channel connected to the encoder end. The energy-aware manager checks the battery level, selects the new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth noting that the analysis of the energy consumption is fundamental for the success of the energy management and optimization mechanism. In this thesis, an energy estimation method driven by platform event monitoring is proposed. In addition, an event filter is suggested to automate the selection of the most appropriate events that affect the energy consumption. At last, a detailed study on the influence of the training data on the model accuracy is presented. The modeling methodology of the energy estimator has been evaluated on different underlying platforms, single-core and multi-core, with different characteristics of workload. All the results show a good accuracy and low on-line computation overhead. The required modifications on the reconfiguration engine to implement the energy-aware manager have been assessed under different scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two different use-cases.
Resumo:
The aim of this work is to develop an automated tool for the optimization of turbomachinery blades founded on an evolutionary strategy. This optimization scheme will serve to deal with supersonic blades cascades for application to Organic Rankine Cycle (ORC) turbines. The blade geometry is defined using parameterization techniques based on B-Splines curves, that allow to have a local control of the shape. The location in space of the control points of the B-Spline curve define the design variables of the optimization problem. In the present work, the performance of the blade shape is assessed by means of fully-turbulent flow simulations performed with a CFD package, in which a look-up table method is applied to ensure an accurate thermodynamic treatment. The solver is set along with the optimization tool to determine the optimal shape of the blade. As only blade-to-blade effects are of interest in this study, quasi-3D calculations are performed, and a single-objective evolutionary strategy is applied to the optimization. As a result, a non-intrusive tool, with no need for gradients definition, is developed. The computational cost is reduced by the use of surrogate models. A Gaussian interpolation scheme (Kriging model) is applied for the estimated n-dimensional function, and a surrogate-based local optimization strategy is proved to yield an accurate way for optimization. In particular, the present optimization scheme has been applied to the re-design of a supersonic stator cascade of an axial-flow turbine. In this design exercise very strong shock waves are generated in the rear blade suction side and shock-boundary layer interaction mechanisms occur. A significant efficiency improvement as a consequence of a more uniform flow at the blade outlet section of the stator is achieved. This is also expected to provide beneficial effects on the design of a subsequent downstream rotor. The method provides an improvement to gradient-based methods and an optimized blade geometry is easily achieved using the genetic algorithm.
Resumo:
As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization.
Resumo:
Limit equilibrium is a common method used to analyze the stability of a slope, and minimization of the factor of safety or identification of critical slip surfaces is a classical geotechnical problem in the context of limit equilibrium methods for slope stability analyses. A mutative scale chaos optimization algorithm is employed in this study to locate the noncircular critical slip surface with Spencer’s method being employed to compute the factor of safety. Four examples from the literature—one homogeneous slope and three layered slopes—are employed to identify the efficiency and accuracy of this approach. Results indicate that the algorithm is flexible and that although it does not generally provide the minimum FS, it provides results that are close to the minimum, an improvement over other solutions proposed in the literature and with small relative errors with respect to other minimum factor of safety (FS) values reported in the literature.