989 resultados para optimal trigger speed
Resumo:
Receive antenna selection (AS) reduces the hardware complexity of multi-antenna receivers by dynamically connecting an instantaneously best antenna element to the available radio frequency (RF) chain. Due to the hardware constraints, the channels at various antenna elements have to be sounded sequentially to obtain estimates that are required for selecting the ``best'' antenna and for coherently demodulating data. Consequently, the channel state information at different antennas is outdated by different amounts. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, the channel estimates of different antennas should be weighted differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then derive an explicit formula for the optimal selection weights that minimize the SEP. We find that when selection weights are not used, the SEP need not improve as the number of antenna elements increases, which is in contrast to the ideal channel estimation case. However, the optimal selection weights remedy this situation and significantly improve performance.
Resumo:
The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.
Resumo:
The objective of this thesis is to examine the economic effects in the conflict between grey seal population and the salmon fishery in the Baltic Sea. We will formulate a bioeconomic model which provides new insights on the optimal management of Atlantic salmon with respect to the effects brought about by the grey seal population. As the catch losses caused by seals have an effect on salmon fishery in Baltic, we will study how seal population affects the present value of the salmon fishery. The study considers the Finnish coastal trap net fishery. The bioeconomic model considers a scenario of sole salmon fishery and a scenario of salmon fishery affected by the grey seal population. On the basis of these scenarios, a seal compensation scheme is introduced. We can observe a significant economic seal-induced effect on the salmon fishery. The results suggest that the present seal compensation scheme emploid by the Finnish government is suboptimal. This thesis is part of the TARMO –project, in which the conflict between grey seal population and salmon fishery is studied using the methods of environmental economics.
Resumo:
Ecology and evolutionary biology is the study of life on this planet. One of the many methods applied to answering the great diversity of questions regarding the lives and characteristics of individual organisms, is the utilization of mathematical models. Such models are used in a wide variety of ways. Some help us to reason, functioning as aids to, or substitutes for, our own fallible logic, thus making argumentation and thinking clearer. Models which help our reasoning can lead to conceptual clarification; by expressing ideas in algebraic terms, the relationship between different concepts become clearer. Other mathematical models are used to better understand yet more complicated models, or to develop mathematical tools for their analysis. Though helping us to reason and being used as tools in the craftmanship of science, many models do not tell us much about the real biological phenomena we are, at least initially, interested in. The main reason for this is that any mathematical model is a simplification of the real world, reducing the complexity and variety of interactions and idiosynchracies of individual organisms. What such models can tell us, however, both is and has been very valuable throughout the history of ecology and evolution. Minimally, a model simplifying the complex world can tell us that in principle, the patterns produced in a model could also be produced in the real world. We can never know how different a simplified mathematical representation is from the real world, but the similarity models do strive for, gives us confidence that their results could apply. This thesis deals with a variety of different models, used for different purposes. One model deals with how one can measure and analyse invasions; the expanding phase of invasive species. Earlier analyses claims to have shown that such invasions can be a regulated phenomena, that higher invasion speeds at a given point in time will lead to a reduction in speed. Two simple mathematical models show that analysis on this particular measure of invasion speed need not be evidence of regulation. In the context of dispersal evolution, two models acting as proof-of-principle are presented. Parent-offspring conflict emerges when there are different evolutionary optima for adaptive behavior for parents and offspring. We show that the evolution of dispersal distances can entail such a conflict, and that under parental control of dispersal (as, for example, in higher plants) wider dispersal kernels are optimal. We also show that dispersal homeostasis can be optimal; in a setting where dispersal decisions (to leave or stay in a natal patch) are made, strategies that divide their seeds or eggs into fractions that disperse or not, as opposed to randomized for each seed, can prevail. We also present a model of the evolution of bet-hedging strategies; evolutionary adaptations that occur despite their fitness, on average, being lower than a competing strategy. Such strategies can win in the long run because they have a reduced variance in fitness coupled with a reduction in mean fitness, and fitness is of a multiplicative nature across generations, and therefore sensitive to variability. This model is used for conceptual clarification; by developing a population genetical model with uncertain fitness and expressing genotypic variance in fitness as a product between individual level variance and correlations between individuals of a genotype. We arrive at expressions that intuitively reflect two of the main categorizations of bet-hedging strategies; conservative vs diversifying and within- vs between-generation bet hedging. In addition, this model shows that these divisions in fact are false dichotomies.
Resumo:
A study is presented which is aimed at developing techniques suitable for effective planning and efficient operation of fleets of aircraft typical of the air force of a developing country. An important aspect of fleet management, the problem of resource allocation for achieving prescribed operational effectiveness of the fleet, is considered. For analysis purposes, it is assumed that the planes operate in a single flying-base repair-depot environment. The perennial problem of resource allocation for fleet and facility buildup that faces planners is modeled and solved as an optimal control problem. These models contain two "policy" variables representing investments in aircraft and repair facilities. The feasibility of decentralized control is explored by assuming the two policy variables are under the control of two independent decisionmakers guided by different and not often well coordinated objectives.
Resumo:
A study is presented which is aimed at developing techniques suitable for effective planning and efficient operation of fleets of aircraft typical of the air force of a developing country. An important aspect of fleet management, the problem of resource allocation for achieving prescribed operational effectiveness of the fleet, is considered. For analysis purposes, it is assumed that the planes operate in a single flying-base repair-depot environment. The perennial problem of resource allocation for fleet and facility buildup that faces planners is modeled and solved as an optimal control problem. These models contain two "policy" variables representing investments in aircraft and repair facilities. The feasibility of decentralized control is explored by assuming the two policy variables are under the control of two independent decisionmakers guided by different and not often well coordinated objectives.
Resumo:
Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and movinghorizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.
Resumo:
This paper presents a genetic algorithm (GA) model for obtaining an optimal operating policy and optimal crop water allocations from an irrigation reservoir. The objective is to maximize the sum of the relative yields from all crops in the irrigated area. The model takes into account reservoir inflow, rainfall on the irrigated area, intraseasonal competition for water among multiple crops, the soil moisture dynamics in each cropped area, the heterogeneous nature of soils. and crop response to the level of irrigation applied. The model is applied to the Malaprabha single-purpose irrigation reservoir in Karnataka State, India. The optimal operating policy obtained using the GA is similar to that obtained by linear programming. This model can be used for optimal utilization of the available water resources of any reservoir system to obtain maximum benefits.
Resumo:
A new Schmitt trigger circuit based on the lambda bipolar transistor is presented. This circuit which exhibits a hysteresis in its transfer characteristic seems to use a smaller chip area than many of the circuits proposed so far.
Resumo:
Hardware constraints, which motivate receive antenna selection, also require that various antenna elements at the receiver be sounded sequentially to obtain estimates required for selecting the `best' antenna and for coherently demodulating data thereafter. Consequently, the channel state information at different antennas is outdated by different amounts and corrupted by noise. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, a preferable strategy is to linearly weight the channel estimates of different antennas differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then characterize explicitly the optimal selection weights that minimize the SEP. We also consider packet reception, in which multiple symbols of a packet are received by the same antenna. New suboptimal, but computationally efficient weighted selection schemes are proposed for reducing the packet error rate. The benefits of weighted selection are also demonstrated using a practical channel code used in third generation cellular systems. Our results show that optimal weighted selection yields a significant performance gain over conventional unweighted selection.
Resumo:
An extensive electricity transmission network facilitates electricity trading between Finland, Sweden, Norway and Denmark. Currently most of the area's power generation is traded at NordPool, where the trading volumes have steadily increased since the early 1990's, when the exchange was founded. The Nordic electricity is expected to follow the current trend and further integrate with the other European electricity markets. Hydro power is the source for roughly a half of the supply in the Nordic electricity market and most of the hydro is generated in Norway. The dominating role of hydro power distinguishes the Nordic electricity market from most of the other market places. Production of hydro power varies mainly due to hydro reservoirs and demand for electricity. Hydro reservoirs are affected by water inflows that differ each year. The hydro reservoirs explain remarkably the behaviour of the Nordic electricity markets. Therefore among others, Kauppi and Liski (2008) have developed a model that analyzes the behaviour of the markets using hydro reservoirs as explanatory factors. Their model includes, for example, welfare loss due to socially suboptimal hydro reservoir usage, socially optimal electricity price, hydro reservoir storage and thermal reservoir storage; that are referred as outcomes. However, the model does not explain the real market condition but rather an ideal situation. In the model the market is controlled by one agent, i.e. one agent controls all the power generation reserves; it is referred to as a socially optimal strategy. Article by Kauppi and Liski (2008) includes an assumption where an individual agent has a certain fraction of market power, e.g. 20 % or 30 %. In order to maintain the focus of this thesis, this part of their paper is omitted. The goal of this thesis is two-fold. Firstly we expand the results from the socially optimal strategy for years 2006-08, as the earlier study finishes in 2005. The second objective is to improve on the methods from the previous study. This thesis results several outcomes (SPOT-price and welfare loss, etc.) due to socially optimal actions. Welfare loss is interesting as it describes the inefficiency of the market. SPOT-price is an important output for the market participants as it often has an effect on end users' electricity bills. Another function is to modify and try to improve the model by means of using more accurate input data, e.g. by considering pollution trade rights effect on input data. After modifications to the model, new welfare losses are calculated and compared with the same results before the modifications. The hydro reservoir has the higher explanatory significance in the model followed by thermal power. In Nordic markets, thermal power reserves are mostly nuclear power and other thermal sources (coal, natural gas, oil, peat). It can be argued that hydro and thermal reservoirs determine electricity supply. Roughly speaking, the model takes into account electricity demand and supply, and several parameters related to them (water inflow, oil price, etc.), yielding finally the socially optimal outcomes. The author of this thesis is not aware of any similar model being tested before. There have been some other studies that are close to the Kauppi and Liski (2008) model, but those have a somewhat different focus. For example, a specific feature in the model is the focus on long-run capacity usage that differs from the previous studies on short-run market power. The closest study to the model is from California's wholesale electricity markets that, however, uses different methodology. Work is constructed as follows.
Resumo:
A computer code is developed as a part of an ongoing project on computer aided process modelling of forging operation, to simulate heat transfer in a die-billet system. The code developed on a stage-by-stage technique is based on an Alternating Direction Implicit scheme. The experimentally validated code is used to study the effect of process specifics such as preheat die temperature, machine ascent time, rate of deformation, and dwell time on the thermal characteristics in a batch coining operation where deformation is restricted to surface level only.
Resumo:
Synthesis of cost-optimal shell-and-tube heat exchangers is a difficult task since it involves a large number of parameters. An attempt is made in this article to simplify the process of choosing the parameter values that will minimize the cost of any heat exchanger satisfying a given heat duty and a particular set of constraints. The simplification is based on decoupling of the geometric and the thermal aspects of the problem. The concept of curves for cost-optimal design is introduced and is shown to simplify the synthesis process for shell-and-tube heat exchangers.