801 resultados para optical communication


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A miniature slow light delay line with the record large delay time, small transmission loss, dispersion, and effective speed of light is proposed and demonstrated using the SNAP (Surface Nanoscale Axial Photonics) technology. © 2014 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally investigate the channel estimation and compensation in a chromatic dispersion (CD) limited 20Gbit/s optical fast orthogonal frequency division multiplexing (F-OFDM) system with up to 840km transmission. It is shown that symmetric extension based guard interval (GI) is required to enable CD compensation using one-tap equalizers. As few as one optical F-OFDM symbol with four and six pilot tones per symbol can achieve near-optimal channel estimation and compensation performance for 600km and 840km respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In linear communication channels, spectral components (modes) defined by the Fourier transform of the signal propagate without interactions with each other. In certain nonlinear channels, such as the one modelled by the classical nonlinear Schrödinger equation, there are nonlinear modes (nonlinear signal spectrum) that also propagate without interacting with each other and without corresponding nonlinear cross talk, effectively, in a linear manner. Here, we describe in a constructive way how to introduce such nonlinear modes for a given input signal. We investigate the performance of the nonlinear inverse synthesis (NIS) method, in which the information is encoded directly onto the continuous part of the nonlinear signal spectrum. This transmission technique, combined with the appropriate distributed Raman amplification, can provide an effective eigenvalue division multiplexing with high spectral efficiency, thanks to highly suppressed channel cross talk. The proposed NIS approach can be integrated with any modulation formats. Here, we demonstrate numerically the feasibility of merging the NIS technique in a burst mode with high spectral efficiency methods, such as orthogonal frequency division multiplexing and Nyquist pulse shaping with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 4.5 dB, which is comparable to results achievable with multi-step per span digital back propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The never-stopping increase in demand for information transmission capacity has been met with technological advances in telecommunication systems, such as the implementation of coherent optical systems, advanced multilevel multidimensional modulation formats, fast signal processing, and research into new physical media for signal transmission (e.g. a variety of new types of optical fibers). Since the increase in the signal-to-noise ratio makes fiber communication channels essentially nonlinear (due to the Kerr effect for example), the problem of estimating the Shannon capacity for nonlinear communication channels is not only conceptually interesting, but also practically important. Here we discuss various nonlinear communication channels and review the potential of different optical signal coding, transmission and processing techniques to improve fiber-optic Shannon capacity and to increase the system reach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WDM signal degradation from pump phase-modulation in a one-pump 20dB net-gain fibre optical parametric amplifier is experimentally and numerically characterised for the first time using 10x59Gb/s QPSK signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an artificial neural network (ANN) equalizer for transmission performance enhancement of coherent optical OFDM (C-OOFDM) signals. The ANN equalizer showed more efficiency in combating both chromatic dispersion (CD) and single-mode fibre (SMF)-induced non-linearities compared to the least mean square (LMS). The equalizer can offer a 1.5 dB improvement in optical signal-to-noise ratio (OSNR) compared to LMS algorithm for 40 Gbit/s C-OOFDM signals when considering only CD. It is also revealed that ANN can double the transmission distance up to 320 km of SMF compared to the case of LMS, providing a nonlinearity tolerance improvement of ∼0.7 dB OSNR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progress on advanced active and passive photonic components that are required for high-speed optical communications over hollow-core photonic bandgap fiber at wavelengths around 2 μm is described in this paper. Single-frequency lasers capable of operating at 10 Gb/s and covering a wide spectral range are realized. A comparison is made between waveguide and surface normal photodiodes with the latter showing good sensitivity up to 15 Gb/s. Passive waveguides, 90° optical hybrids, and arrayed waveguide grating with 100-GHz channel spacing are demonstrated on a large spot-size waveguide platform. Finally, a strong electro-optic effect using the quantum confined Stark effect in strain-balanced multiple quantum wells is demonstrated and used in a Mach-Zehnder modulator capable of operating at 10 Gb/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This issue of Philosophical Transactions of the Royal Society, Part A represents a summary of the recent discussion meeting 'Communication networks beyond the capacity crunch'. The purpose of the meeting was to establish the nature of the capacity crunch, estimate the time scales associated with it and to begin to find solutions to enable continued growth in a post-crunch era. The meeting confirmed that, in addition to a capacity shortage within a single optical fibre, many other 'crunches' are foreseen in the field of communications, both societal and technical. Technical crunches identified included the nonlinear Shannon limit, wireless spectrum, distribution of 5G signals (front haul and back haul), while societal influences included net neutrality, creative content generation and distribution and latency, and finally energy and cost. The meeting concluded with the observation that these many crunches are genuine and may influence our future use of technology, but encouragingly noted that research and business practice are already moving to alleviate many of the negative consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this talk we will review some of the key enabling technologies of optical communications and potential future bottlenecks. Single mode fibre (SMF) has long been the preferred waveguide for long distance communication. This is largely due to low loss, low cost and relative linearity over a wide bandwidth. As capacity demands have grown SMF has largely been able to keep pace with demand. Several groups have been identifying the possibility of exhausting the bandwidth provided by SMF [1,2,3]. This so called “capacity-crunch” has potentially vast economic and social consequences and will be discussed in detail. As demand grows optical power launched into the fibre has the potential to cause nonlinearities that can be detrimental to transmission. There has been considerable work done on identifying this nonlinear limit [4, 5] with a strong re- search interest currently on the topic of nonlinear compensation [6, 7]. Embracing and compensating for nonlinear transmission is one potential solution that may extend the lifetime of the current waveguide technology. However, at sufficiently high powers the waveguide will fail due to heat-induced mechanical failure. Moving forward it be- comes necessary to address the waveguide itself with several promising contenders discussed, including few-mode fibre and multi-core fibre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large broadening of short optical pulses due to fiber dispersion leads to a strong overlap in information data streams resulting in statistical deviations of the local power from its average. We present a theoretical analysis of rare events of high-intensity fluctuations-optical freak waves-that occur in fiber communication links using bit-overlapping transmission. Although the nature of the large fluctuations examined here is completely linear, as compared to commonly studied freak waves generated by nonlinear effects, the considered deviations inherit from rogue waves the key features of practical interest-random appearance of localized high-intensity pulses. We use the term "rogue wave" in an unusual context mostly to attract attention to both the possibility of purely linear statistical generation of huge amplitude waves and to the fact that in optics the occurrence of such pulses might be observable even with the standard Gaussian or even rarer-than-Gaussian statistics, without imposing the condition of an increased probability of extreme value events. © 2011 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multicore fiber (MCF) is a physical system of high practical importance. In addition to standard exploitation, MCFs may support discrete vortices that carry orbital angular momentum suitable for spatial-division multiplexing in high-capacity fiber-optic communication systems. These discrete vortices may also be attractive for high-power laser applications. We present the conditions of existence, stability, and coherent propagation of such optical vortices for two practical MCF designs. Through optimization, we found stable discrete vortices that were capable of transferring high coherent power through the MCF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules. In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose the design of communication systems based on using periodic nonlinear Fourier transform (PNFT), following the introduction of the method in the Part I. We show that the famous "eigenvalue communication" idea [A. Hasegawa and T. Nyu, J. Lightwave Technol. 11, 395 (1993)] can also be generalized for the PNFT application: In this case, the main spectrum attributed to the PNFT signal decomposition remains constant with the propagation down the optical fiber link. Therefore, the main PNFT spectrum can be encoded with data in the same way as soliton eigenvalues in the original proposal. The results are presented in terms of the bit-error rate (BER) values for different modulation techniques and different constellation sizes vs. the propagation distance, showing a good potential of the technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems. Mastering the nonlinear channels requires paradigm shift from current modulation, coding and transmission techniques originally developed for linear communication systems. Here we demonstrate that using the integrability of the master model and the nonlinear Fourier transform, the lower bound on the capacity per symbol can be estimated as 10.7 bits per symbol with 500 GHz bandwidth over 2,000 km.