935 resultados para non-metric statistics
Resumo:
Purpose - During multitasking, humans handle multiple tasks through task switching or engage in multitasking information behaviors. For example, a user switches between seeking new kitchen information and medical information. Recent studies provide insights these complex multitasking human information behaviors (HIB). However, limited studies have examined the interplay between information and non-information tasks. Design/methodology/approach - The goal of the paper was to examine the interplay of information and non-information task behaviors. Findings - This paper explores and speculates on a new direction in HIB research. The nature of HIB as a multitasking activity including the interplay of information and non-information behavior tasks, and the relation between multitasking information behavior to cognitive style and individual differences, is discussed. A model of multitasking between information and non-information behavior tasks is proposed. Practical implications/limitations - Multitasking information behavior models should include the interplay of information and non-information tasks, and individual differences and cognitive styles. Originality/value - The paper is the first information science theoretical examination of the interplay between information and non-information tasks. © Emerald Group Publishing Limited.
Resumo:
In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios
Resumo:
Physical activity is important following breast cancer. Trials of non-face-to-face interventions are needed to assist in reaching women living outside major metropolitan areas. This study seeks to evaluate the feasibility and effectiveness of a telephone-delivered, mixed aerobic and resistance exercise intervention for non-urban Australian women with breast cancer. A randomized controlled trial comparing an 8-month intervention delivered by exercise physiologists (n = 73) to usual care (n = 70). Sixty-one percent recruitment rate and 96% retention at 12 months; 79% of women in the intervention group received at least 75% of calls; odds (OR, 95% CI) of meeting intervention targets favored the intervention group for resistance training (OR 3.2; 1.2, 8.9) and aerobic (OR 2.1; 0.8, 5.5) activity. Given the limited availability of physical activity programs for non-urban women with breast cancer, results provide strong support for feasibility and modest support for the efficacy of telephone-delivered interventions.
Resumo:
In Newson v Aust Scan Pty Ltd t/a Ikea Springwood [2010] QSC 223 the Supreme Court examined the discretion under s 32(2) of the Personal Injuries Proceedings Act 2002 (Qld), to permit a document which has not been disclosed as required by the pre-court procedures under the PIPA to be used in a subsequent court proceeding. This appears to be the first time that the nature and parameters of the discretion have been judicially considered.
Resumo:
This paper presents a general, global approach to the problem of robot exploration, utilizing a topological data structure to guide an underlying Simultaneous Localization and Mapping (SLAM) process. A Gap Navigation Tree (GNT) is used to motivate global target selection and occluded regions of the environment (called “gaps”) are tracked probabilistically. The process of map construction and the motion of the vehicle alters both the shape and location of these regions. The use of online mapping is shown to reduce the difficulties in implementing the GNT.
Resumo:
With rapid and continuing growth of learning support initiatives in mathematics and statistics found in many parts of the world, and with the likelihood that this trend will continue, there is a need to ensure that robust and coherent measures are in place to evaluate the effectiveness of these initiatives. The nature of learning support brings challenges for measurement and analysis of its effects. After briefly reviewing the purpose, rationale for, and extent of current provision, this article provides a framework for those working in learning support to think about how their efforts can be evaluated. It provides references and specific examples of how workers in this field are collecting, analysing and reporting their findings. The framework is used to structure evaluation in terms of usage of facilities, resources and services provided, and also in terms of improvements in performance of the students and staff who engage with them. Very recent developments have started to address the effects of learning support on the development of deeper approaches to learning, the affective domain and the development of communities of practice of both learners and teachers. This article intends to be a stimulus to those who work in mathematics and statistics support to gather even richer, more valuable, forms of data. It provides a 'toolkit' for those interested in evaluation of learning support and closes by referring to an on-line resource being developed to archive the growing body of evidence. © 2011 Taylor & Francis.
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.
Resumo:
This instrument was used in the project named Teachers Reporting Child Sexual Abuse: Towards Evidence-based Reform of Law, Policy and Practice (ARC DP0664847)
Resumo:
This instrument was used in the project named Teachers Reporting Child Sexual Abuse: Towards Evidence-based Reform of Law, Policy and Practice (ARC DP0664847)
Resumo:
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.
Resumo:
In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.
Resumo:
Discrete Markov random field models provide a natural framework for representing images or spatial datasets. They model the spatial association present while providing a convenient Markovian dependency structure and strong edge-preservation properties. However, parameter estimation for discrete Markov random field models is difficult due to the complex form of the associated normalizing constant for the likelihood function. For large lattices, the reduced dependence approximation to the normalizing constant is based on the concept of performing computationally efficient and feasible forward recursions on smaller sublattices which are then suitably combined to estimate the constant for the whole lattice. We present an efficient computational extension of the forward recursion approach for the autologistic model to lattices that have an irregularly shaped boundary and which may contain regions with no data; these lattices are typical in applications. Consequently, we also extend the reduced dependence approximation to these scenarios enabling us to implement a practical and efficient non-simulation based approach for spatial data analysis within the variational Bayesian framework. The methodology is illustrated through application to simulated data and example images. The supplemental materials include our C++ source code for computing the approximate normalizing constant and simulation studies.
Resumo:
Introduction This study reports on the development of a self report assessment tool to increase the efficacy of crash prediction within Australian Fleet settings Over last 20 years an array of measures have been produced (Driver anger scale, Driving Skill Inventory, Manchester Driver Behaviour Questionnaire, Driver Attitude Questionnaire, Driver Stress Inventory, Safety Climate Questionnaire) While these tools are useful, research has demonstrated limited ability to accurately identify individuals most likely to be involved in a crash. Reasons cited include; - Crashes are relatively rare - Other competing factors may influence crash event - Ongoing questions regarding the validity of self report measures (common method variance etc) - Lack of contemporary issues relating to fleet driving performance