941 resultados para non-linear loads


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Access to healthcare is a major problem in which patients are deprived of receiving timely admission to healthcare. Poor access has resulted in significant but avoidable healthcare cost, poor quality of healthcare, and deterioration in the general public health. Advanced Access is a simple and direct approach to appointment scheduling in which the majority of a clinic's appointments slots are kept open in order to provide access for immediate or same day healthcare needs and therefore, alleviate the problem of poor access the healthcare. This research formulates a non-linear discrete stochastic mathematical model of the Advanced Access appointment scheduling policy. The model objective is to maximize the expected profit of the clinic subject to constraints on minimum access to healthcare provided. Patient behavior is characterized with probabilities for no-show, balking, and related patient choices. Structural properties of the model are analyzed to determine whether Advanced Access patient scheduling is feasible. To solve the complex combinatorial optimization problem, a heuristic that combines greedy construction algorithm and neighborhood improvement search was developed. The model and the heuristic were used to evaluate the Advanced Access patient appointment policy compared to existing policies. Trade-off between profit and access to healthcare are established, and parameter analysis of input parameters was performed. The trade-off curve is a characteristic curve and was observed to be concave. This implies that there exists an access level at which at which the clinic can be operated at optimal profit that can be realized. The results also show that, in many scenarios by switching from existing scheduling policy to Advanced Access policy clinics can improve access without any decrease in profit. Further, the success of Advanced Access policy in providing improved access and/or profit depends on the expected value of demand, variation in demand, and the ratio of demand for same day and advanced appointments. The contributions of the dissertation are a model of Advanced Access patient scheduling, a heuristic to solve the model, and the use of the model to understand the scheduling policy trade-offs which healthcare clinic managers must make. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (ΣΔ) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authors’ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverse heat conduction problems (IHCPs) appear in many important scientific and technological fields. Hence analysis, design, implementation and testing of inverse algorithms are also of great scientific and technological interest. The numerical simulation of 2-D and –D inverse (or even direct) problems involves a considerable amount of computation. Therefore, the investigation and exploitation of parallel properties of such algorithms are equally becoming very important. Domain decomposition (DD) methods are widely used to solve large scale engineering problems and to exploit their inherent ability for the solution of such problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the construction and structuring of a technological niche – i.e. a protected space where promising but still underperforming technologies are stabilized and articulated with societal needs – and discusses the processes that influence niche development and may enable niche breakout. In theoretical terms the paper is grounded on the multi-level approach to sustainability transitions, and particularly on the niche literature. But it also attempts to address the limitations of this literature in what concerns the spatial dimension of niche development. It is argued that technological niches can transcend the narrow territorial boundaries to which they are often confined, and encompass communities and actions that span several spatial levels, without losing some territorial embeddedness. It is further proposed that these features shape the niche trajectory and, therefore, need to be explicitly considered by the niche theoretical framework. To address this problem the paper builds on and extends the socio-cognitive perspective to technology development, introducing a further dimension – space – which broadens the concept of technological niche and permits to better capture the complexity of niche behaviour. This extended framework is applied to the case of an emerging renewable energy technology – wave energy - which exhibits a particularly slow and non-linear development trajectory. The empirical analysis starts by examining how an “overall niche space” in wave energy was spatially constructed over time. Then it investigates in greater detail the niche development processes that took place in Portugal, a country that was among the pioneers in the field, and whose actors have been, from very early stages, engaged in the activities conducted at various spatial levels. Through this combined analysis, the paper seeks to understand whether and how niche development is shaped by processes taking place at different spatial levels. More specifically it investigates the interplay between territorial and relational elements in niche development, and how these different dynamics influence the performance of the niche processes and impact on the overall niche trajectory. The results confirm the niche multi-spatial dynamics, showing that it is shaped by the interplay between a niche relational space constructed by actors’ actions and interactions on/across levels, and the territorial effects introduced by these actors’ embeddedness in particular geographical and institutional settings. They contribute to a more precise understanding of the processes that can accelerate or slow down the trajectory of a technological niche. In addition, the results shed some light into the niche activities conducted in/originating from a specific territorial setting - Portugal - offering some insights into the behaviour of key actors and its implications for the positioning of the country in the emerging field, which can be relevant for the formulation of strategies and policies for this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear thermo-mechanical properties of advanced polymers are crucial to accurate prediction of the process induced warpage and residual stress of electronics packages. The Fiber Bragg grating (FBG) sensor based method is advanced and implemented to determine temperature and time dependent nonlinear properties. The FBG sensor is embedded in the center of the cylindrical specimen, which deforms together with the specimen. The strains of the specimen at different loading conditions are monitored by the FBG sensor. Two main sources of the warpage are considered: curing induced warpage and coefficient of thermal expansion (CTE) mismatch induced warpage. The effective chemical shrinkage and the equilibrium modulus are needed for the curing induced warpage prediction. Considering various polymeric materials used in microelectronic packages, unique curing setups and procedures are developed for elastomers (extremely low modulus, medium viscosity, room temperature curing), underfill materials (medium modulus, low viscosity, high temperature curing), and epoxy molding compound (EMC: high modulus, high viscosity, high temperature pressure curing), most notably, (1) zero-constraint mold for elastomers; (2) a two-stage curing procedure for underfill materials and (3) an air-cylinder based novel setup for EMC. For the CTE mismatch induced warpage, the temperature dependent CTE and the comprehensive viscoelastic properties are measured. The cured cylindrical specimen with a FBG sensor embedded in the center is further used for viscoelastic property measurements. A uni-axial compressive loading is applied to the specimen to measure the time dependent Young’s modulus. The test is repeated from room temperature to the reflow temperature to capture the time-temperature dependent Young’s modulus. A separate high pressure system is developed for the bulk modulus measurement. The time temperature dependent bulk modulus is measured at the same temperatures as the Young’s modulus. The master curve of the Young’s modulus and bulk modulus of the EMC is created and a single set of the shift factors is determined from the time temperature superposition. The supplementary experiments are conducted to verify the validity of the assumptions associated with the linear viscoelasticity. The measured time-temperature dependent properties are further verified by a shadow moiré and Twyman/Green test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a class of time-delay singular systems with Lipschitz non-linearities. A method of designing full-order observers for the systems is presented which can handle non-linearities with large-Lipschitz constants. The Lipschitz conditions are reformulated into linear parameter varying systems, then the Lyapunov–Krasovskii approach and the convexity principle are applied to study stability of the new systems. Furthermore, the observers design does not require the assumption of regularity for singular systems. In case the systems are non-singular, a reduced-order observers design is proposed instead. In both cases, synthesis conditions for the observers designs are derived in terms of linear matrix inequalities which can be solved efficiently by numerical methods. The efficiency of the obtained results is illustrated by two numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the authors address a new problem of finding, with a pre-specified time, bounds of partial states of non-linear discrete systems with a time-varying delay. A novel computational method for deriving the smallest bounds is presented. The method is based on a new comparison principle, a new algorithm for finding the infimum of a fractal function, and linear programming. The effectiveness of our obtained results is illustrated through a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of carbon fiber, particularly the oxidation/stabilization step, is a complex process. In the present study, a non-linear mathematical model has been developed for the prediction of density of polyacrylonitrile (PAN) and oxidized PAN fiber (OPF), as a key physical property for various applications, such as energy and material optimization, modeling, and design of the stabilization process. The model is based on the available functional groups in PAN and OPF. Expected functional groups, including [Formula presented], [Formula presented], –CH2, [Formula presented], and [Formula presented], were identified and quantified through the full deconvolution analysis of Fourier transform infrared attenuated total reflectance (FT-IR ATR) spectra obtained from fibers. These functional groups form the basis of three stabilization rendering parameters, representing the cyclization, dehydrogenation and oxidation reactions that occur during PAN stabilization, and are used as the independent variables of the non-linear predictive model. The k-fold cross validation approach, with k = 10, has been employed to find the coefficients of the model. This model estimates the density of PAN and OPF independent of operational parameters and can be expanded to all operational parameters. Statistical analysis revealed good agreement between the governing model and experiments. The maximum relative error was less than 1% for the present model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of work and careers in China are constantly evolving as a result of market-oriented economic transition in the country. Increasingly, employees are required to be proactive and self-starting in skill and competency improvement for employability. Employee self-development (ESD) involves considerations embedded in a wide range of relationships including both work and non-work domains. This research draws from social exchange theory and information processing theory to investigate how guanxi, a relational phenomenon unique to traditional Chinese culture, influences ESD. Drawing from the experience of a sample (n = 404) of employees in China, an inverted U-shaped relationship between guanxi and ESD is found, suggesting that initial positive influences of guanxi on ESD diminish after reaching an inflexion point. We also found that these influences are stronger for gender congruent employee-supervisor dyads. The theoretical and managerial implications that too much guanxi is not necessarily good for ESD, particularly in the presence of gender congruence, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.