918 resultados para multitracer imaging
Resumo:
High-altitude relight inside a lean-direct-injection gas-turbine combustor is investigated experimentally by highspeed imaging. Realistic operating conditions are simulated in a ground-based test facility, with two conditions being studied: one inside and one outside the combustor ignition loop. The motion of hot gases during the early stages of relight is recorded using a high-speed camera. An algorithm is developed to track the flame movement and breakup, revealing important characteristics of the flame development process, including stabilization timescales, spatial trajectories, and typical velocities of hot gas motion. Although the observed patterns of ignition failure are in broad agreement with results from laboratory-scale studies, other aspects of relight behavior are not reproduced in laboratory experiments employing simplified flow geometries and operating conditions. For example, when the spark discharge occurs, the air velocity below the igniter in a real combustor is much less strongly correlated to ignition outcome than laboratory studies would suggest. Nevertheless, later flame development and stabilization are largely controlled by the cold flowfield, implying that the location of the igniter may, in the first instance, be selected based on the combustor cold flow. Copyright © 2010.
Resumo:
We report a technique which can be used to improve the accuracy of infrared (IR) surface temperature measurements made on MEMS (Micro-Electro-Mechanical- Systems) devices. The technique was used to thermally characterize a SOI (Silicon-On-Insulator) CMOS (Complementary Metal Oxide Semiconductor) MEMS thermal flow sensor. Conventional IR temperature measurements made on the sensor were shown to give significant surface temperature errors, due to the optical transparency of the SiO 2 membrane layers and low emissivity/high reflectivity of the metal. By making IR measurements on radiative carbon micro-particles placed in isothermal contact with the device, the accuracy of the surface temperature measurement was significantly improved. © 2010 EDA Publishing/THERMINIC.
Resumo:
Prefrontal impairments have been hypothesized to be most strongly associated with the cognitive and emotional dysfunction in depression. Recently, white matter microstructural abnormalities in prefrontal lobe have been reported in elderly patients with ma
Resumo:
http://www-civ.eng.cam.ac.uk/cjb/papers/cp88.pdf
Resumo:
Super-Resolution imaging techniques such as Fluorescent Photo-Activation Localisation Microscopy (FPALM) have created a powerful new toolkit for investigating living cells, however a simple platform for growing, trapping, holding and controlling the cells is needed before the approach can become truly widespread. We present a microfluidic device formed in polydimethylsiloxane (PDMS) with a fluidic design which traps cells in a high-density array of wells and holds them very still throughout the life cycle, using hydrodynamic forces only. The device meets or exceeds all the necessary criteria for FPALM imaging of Schizosaccharomyces pombe and is designed to remain flexible, robust and easy to use. © 2011 IEEE.
Resumo:
The thermal imaging technique relies on the usage of infrared signal to detect the temperature field. Using temperature as a flow tracer, thermography is used to investigate the scalar transport in the shallow-water wake generated by an emergent circular cylinder. Thermal imaging is demonstrated to be a good quantitative flow visualization technique for studying turbulent mixing phenomena in shallow waters. A key advantage of the thermal imaging method over other scalar measurement techniques, such as the Laser Induced Fluorescence (LIF) and Planar Concentration Analysis (PCA) methods, is that it involves a very simple experimental setup. The dispersion characteristics captured with this technique are found to be similar to past studies with traditional measurement techniques. © 2012 Publishing House for Journal of Hydrodynamics.