780 resultados para multi-objective decision making
Resumo:
In a recent paper, "A combined tool for environmental scientists and decision makers: ternary diagrams and emergy accounting." [Giannettti BF, Barrella FA, Almeida CMVB. A combined tool for environment scientists and decision makers: ternary diagrams and emergy accounting. J Clean Prod, in press http://dx.doi.org/10.1016/j.jclepro.2004.09.002] Ternary diagrams were proposed as a graphical tool to assist emergy analysis. The graphical representation of the emergy accounting data makes it possible to compare processes and systems with and without ecosystem services, to evaluate improvements and to follow the system performance over time. The graphic tool is versatile and adaptable to represent products, processes, systems, countries, and different periods of time.The use and the versatility of ternary diagrams for assisting in performing emergy analyses are illustrated by means of five examples taken from the literature, which are presented and discussed. It is shown that emergetic ternary diagram's properties assist the assessment of the system of the system efficiency, its dependance upon renewable and non-renewable inputs and the environmental support for dilution and abatement of process emissions. With the aid of ternary diagrams, details such as the interaction between systems and between systems and the environment are recognized and evaluated. Such a tool for graphical analysis allows a transparent presentation of the results and can serve as an interface between emergy scientists and decision makers, provided the meaning of each line in the diagram is carefully explained and understood. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
"Mission for the 21st Century: From Inclusion to Influence, From Diversity to Decision-Making Power"
Resumo:
Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats' neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments.
Resumo:
The management of health services is a complex administrative practice due to the breadth of the field of health and the need to reconcile individual, corporate and collective interests that are not always convergent. In this context, the evaluation needs to have specific characteristics in order to fulfill its role. The scope of this study was to establish the characteristics that the evaluation for the management of health services should have to contribute to decision-making. Usefulness, opportunity, feasibility, reliability, objectivity and directionality represent the set of principles upon which the evaluation should be based. Evaluations should lead to decisions that guarantee not only their efficiency and effectiveness but also their implementation. The evaluation process should ensure that decisions involve all stakeholders in order to render the implementation of decisions feasible, and take into account the health needs of the population and the goals set for the services. The scope of this article is to elicit a debate among different stakeholders in the evaluation in the hope that it can contribute to the reflection on the real usefulness of evaluations in which the political component in management has been increasingly prevalent.
Resumo:
The extraction of information about neural activity timing from BOLD signal is a challenging task as the shape of the BOLD curve does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect. The face validity and applicability of the concept of NPT are evaluated through simulations and analysis of experimental time series. The results of both simulation and application were compared with summary measures of HRF shape. The experiment that was analyzed consisted of a decision-making paradigm with simultaneous emotional distracters. We hypothesize that the NPT in primary sensory areas, like the fusiform gyrus, is approximately the stimulus presentation duration. On the other hand, in areas related to processing of an emotional distracter, the NPT should depend on the experimental condition. As predicted, the NPT in fusiform gyrus is close to the stimulus duration and the NPT in dorsal anterior cingulate gyrus depends on the presence of an emotional distracter. Interestingly, the NPT in right but not left dorsal lateral prefrontal cortex depends on the stimulus emotional content. The summary measures of HRF obtained by a standard approach did not detect the variations observed in the NPT. Hum Brain Mapp, 2012. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Current SoC design trends are characterized by the integration of larger amount of IPs targeting a wide range of application fields. Such multi-application systems are constrained by a set of requirements. In such scenario network-on-chips (NoC) are becoming more important as the on-chip communication structure. Designing an optimal NoC for satisfying the requirements of each individual application requires the specification of a large set of configuration parameters leading to a wide solution space. It has been shown that IP mapping is one of the most critical parameters in NoC design, strongly influencing the SoC performance. IP mapping has been solved for single application systems using single and multi-objective optimization algorithms. In this paper we propose the use of a multi-objective adaptive immune algorithm (M(2)AIA), an evolutionary approach to solve the multi-application NoC mapping problem. Latency and power consumption were adopted as the target multi-objective functions. To compare the efficiency of our approach, our results are compared with those of the genetic and branch and bound multi-objective mapping algorithms. We tested 11 well-known benchmarks, including random and real applications, and combines up to 8 applications at the same SoC. The experimental results showed that the M(2)AIA decreases in average the power consumption and the latency 27.3 and 42.1 % compared to the branch and bound approach and 29.3 and 36.1 % over the genetic approach.
Resumo:
A common interest in gene expression data analysis is to identify from a large pool of candidate genes the genes that present significant changes in expression levels between a treatment and a control biological condition. Usually, it is done using a statistic value and a cutoff value that are used to separate the genes differentially and nondifferentially expressed. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating sequentially credibility intervals from predictive densities which are constructed using the sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained report evidence that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a well-known publicly available data set on Escherichia coli bacterium.
Resumo:
Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.
Resumo:
The studies in the present thesis focus on post-decision processes using the theoretical framework of Differentiation and Consolidation Theory. This thesis consists of three studies. In all these studies, pre-decision evaluations are compared with post-decision evaluations in order to explore differences in evaluations of decision alternatives before and after a decision. The main aim of the studies was to describe and gain a clearer and better understanding of how people re-evaluate information, following a decision for which they have experienced the decision and outcome. The studies examine how the attractiveness evaluations of important attributes are restructured from the pre-decision to the post-decision phase; particularly restructuring processes of value conflicts. Value conflict attributes are those in which information speaks against the chosen alternative in a decision. The first study investigates an important real-life decision and illustrates different post-decision (consolidation) processes following the decision. The second study tests whether decisions with value conflicts follow the same consolidation (post-decision restructuring) processes when the conflict is controlled experimentally, as in earlier studies of less controlled real-life decisions. The third study investigates consolidation and value conflicts in decisions in which the consequences are controlled and of different magnitudes. The studies in the present thesis have shown how attractiveness restructuring of attributes in conflict occurs in the post-decision phase. Results from the three studies indicated that attractiveness restructuring of attributes in conflict was stronger for important real-life decisions (Study 1) and in situations in which real consequences followed a decision (Study 3) than in more controlled, hypothetical decision situations (Study 2). Finally, some proposals for future research are suggested, including studies of the effects of outcomes and consequences on consolidation of prior decisions and how a decision maker’s involvement affects his or her pre- and post-decision processes.
Resumo:
Programa de Doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería