885 resultados para multi-agent incremental negotiation scheme
Resumo:
Radio frequency identification (RFID) technology has gained increasing popularity in businesses to improve operational efficiency and maximise costs saving. However, there is a gap in the literature exploring the enhanced use of RFID to substantially add values to the supply chain operations, especially beyond what the RFID vendors could offer. This paper presents a multi-agent system, incorporating RFID technology, aimed at fulfilling the gap. The system is developed to model supply chain activities (in particular, logistics operations) and is comprised of autonomous and intelligent agents representing the key entities in the supply chain. With the advanced characteristics of RFID incorporated, the agent system examines ways logistics operations (i.e. distribution network) particular) can be efficiently reconfigured and optimised in response to dynamic changes in the market, production and at any stage in the supply chain. © 2012 IEEE.
Resumo:
This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.^
Resumo:
Distributed Generation (DG) from alternate sources and smart grid technologies represent good solutions for the increase in energy demands. Employment of these DG assets requires solutions for the new technical challenges that are accompanied by the integration and interconnection into operational power systems. A DG infrastructure comprised of alternate energy sources in addition to conventional sources, is developed as a test bed. The test bed is operated by synchronizing, wind, photovoltaic, fuel cell, micro generator and energy storage assets, in addition to standard AC generators. Connectivity of these DG assets is tested for viability and for their operational characteristics. The control and communication layers for dynamic operations are developed to improve the connectivity of alternates to the power system. A real time application for the operation of alternate sources in microgrids is developed. Multi agent approach is utilized to improve stability and sequences of actions for black start are implemented. Experiments for control and stability issues related to dynamic operation under load conditions have been conducted and verified.
Resumo:
F. Meneguzzi thanks Fundaç ao de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil) for the financial support through the ACI program (Grant ref. 3541-2551/12-0) and the ARD program (Grant ref. 12/0808-5), as well as Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the Universal Call (Grant ref. 482156/2013-9) and PQ fellowship (Grant ref. 306864/2013-4). N. Oren and W.W. Vasconcelos acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC, UK) within the research project “Scrutable Autonomous Systems” (SAsSY11, Grant ref. EP/J012084/1).
Resumo:
Acknowledgments Dr. Sensoy thanks to the U.S. Army Research Laboratory for its support under grant W911NF-14-1-0199 and The Scientific and Technological Research Council of Turkey (TUBITAK) for its support under grant 113E238
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Relatório de estágio apresentado para a obtenção do grau de mestre em Educação e Comunicação Multimédia
Resumo:
With increasing prevalence and capabilities of autonomous systems as part of complex heterogeneous manned-unmanned environments (HMUEs), an important consideration is the impact of the introduction of automation on the optimal assignment of human personnel. The US Navy has implemented optimal staffing techniques before in the 1990's and 2000's with a "minimal staffing" approach. The results were poor, leading to the degradation of Naval preparedness. Clearly, another approach to determining optimal staffing is necessary. To this end, the goal of this research is to develop human performance models for use in determining optimal manning of HMUEs. The human performance models are developed using an agent-based simulation of the aircraft carrier flight deck, a representative safety-critical HMUE. The Personnel Multi-Agent Safety and Control Simulation (PMASCS) simulates and analyzes the effects of introducing generalized maintenance crew skill sets and accelerated failure repair times on the overall performance and safety of the carrier flight deck. A behavioral model of four operator types (ordnance officers, chocks and chains, fueling officers, plane captains, and maintenance operators) is presented here along with an aircraft failure model. The main focus of this work is on the maintenance operators and aircraft failure modeling, since they have a direct impact on total launch time, a primary metric for carrier deck performance. With PMASCS I explore the effects of two variables on total launch time of 22 aircraft: 1) skill level of maintenance operators and 2) aircraft failure repair times while on the catapult (referred to as Phase 4 repair times). It is found that neither introducing a generic skill set to maintenance crews nor introducing a technology to accelerate Phase 4 aircraft repair times improves the average total launch time of 22 aircraft. An optimal manning level of 3 maintenance crews is found under all conditions, the point at which any additional maintenance crews does not reduce the total launch time. An additional discussion is included about how these results change if the operations are relieved of the bottleneck of installing the holdback bar at launch time.
Resumo:
This paper presents the novel theory for performing multi-agent activity recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable. Complex human activities are composed from sequences of underlying primitive activities. We do not assume that the exact temporal ordering of primitives is necessary, so can represent complex activity using an unordered bag. Our three-tier architecture comprises low-level video tracking, event analysis and high-level inference. High-level inference is performed using a new, cascading extension of the Rao–Blackwellised Particle Filter. Simulated annealing is used to identify pairs of agents involved in multi-agent activity. We validate our framework using the benchmarked PETS 2006 video surveillance dataset and our own sequences, and achieve a mean recognition F-Score of 0.82. Our approach achieves a mean improvement of 17% over a Hidden Markov Model baseline.
Resumo:
Planning is an essential process in teams of multiple agents pursuing a common goal. When the effects of actions undertaken by agents are uncertain, evaluating the potential risk of such actions alongside their utility might lead to more rational decisions upon planning. This challenge has been recently tackled for single agent settings, yet domains with multiple agents that present diverse viewpoints towards risk still necessitate comprehensive decision making mechanisms that balance the utility and risk of actions. In this work, we propose a novel collaborative multi-agent planning framework that integrates (i) a team-level online planner under uncertainty that extends the classical UCT approximate algorithm, and (ii) a preference modeling and multicriteria group decision making approach that allows agents to find accepted and rational solutions for planning problems, predicated on the attitude each agent adopts towards risk. When utilised in risk-pervaded scenarios, the proposed framework can reduce the cost of reaching the common goal sought and increase effectiveness, before making collective decisions by appropriately balancing risk and utility of actions.
Resumo:
Abstract Reputation, influenced by ratings from past clients, is crucial for providers competing for custom. For new providers with less track record, a few negative ratings can harm their chances of growing. In the JASPR project, we aim to look at how to ensure automated reputation assessments are justified and informative. Even an honest balanced review of a service provision may still be an unreliable predictor of future performance if the circumstances differ. For example, a service may have previously relied on different sub-providers to now, or been affected by season-specific weather events. A common way to ameliorate the ratings that may not reflect future performance is by weighting by recency. We argue that better results are obtained by querying provenance records on how services are provided for the circumstances of provision, to determine the significance of past interactions. Informed by case studies in global logistics, taxi hire, and courtesy car leasing, we are going on to explore the generation of explanations for reputation assessments, which can be valuable both for clients and for providers wishing to improve their match to the market, and applying machine learning to predict aspects of service provision which may influence decisions on the appropriateness of a provider. In this talk, I will give an overview of the research conducted and planned on JASPR. Speaker Biography Dr Simon Miles Simon Miles is a Reader in Computer Science at King's College London, UK, and head of the Agents and Intelligent Systems group. He conducts research in the areas of normative systems, data provenance, and medical informatics at King's, and has published widely and manages a number of research projects in these areas. He was previously a researcher at the University of Southampton after graduating from his PhD at Warwick. He has twice been an organising committee member for the Autonomous Agents and Multi-Agent Systems conference series, and was a member of the W3C working group which published standards on interoperable provenance data in 2013.
Resumo:
This keynote presentation will report some of our research work and experience on the development and applications of relevant methods, models, systems and simulation techniques in support of different types and various levels of decision making for business, management and engineering. In particular, the following topics will be covered. Modelling, multi-agent-based simulation and analysis of the allocation management of carbon dioxide emission permits in China (Nanfeng Liu & Shuliang Li Agent-based simulation of the dynamic evolution of enterprise carbon assets (Yin Zeng & Shuliang Li) A framework & system for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps: a big data perspective (Jin Xu, Zheng Li, Shuliang Li & Yanyan Zhang) Open innovation: intelligent model, social media & complex adaptive system simulation (Shuliang Li & Jim Zheng Li) A framework, model and software prototype for modelling and simulation for deshopping behaviour and how companies respond (Shawkat Rahman & Shuliang Li) Integrating multiple agents, simulation, knowledge bases and fuzzy logic for international marketing decision making (Shuliang Li & Jim Zheng Li) A Web-based hybrid intelligent system for combined conventional, digital, mobile, social media and mobile marketing strategy formulation (Shuliang Li & Jim Zheng Li) A hybrid intelligent model for Web & social media dynamics, and evolutionary and adaptive branding (Shuliang Li) A hybrid paradigm for modelling, simulation and analysis of brand virality in social media (Shuliang Li & Jim Zheng Li) Network configuration management: attack paradigms and architectures for computer network survivability (Tero Karvinen & Shuliang Li)
Resumo:
As emoções são consideradas a regra central de nossas vidas, tendo grande impacto na tomada de decisões, ações, memória, atenção, etc. Sendo assim, existe grande interesse em simulá-las em ambientes computacionais, possibilitando que situações do cotidiano humano possam ser estudadas em ambientes controlados. Embora existam modelos teóricos para o funcionamento de emoções, estes por si só são insuficientes para uma simulação precisa em meios computacionais. Tendo como base um destes modelos, o modelo OCC, essa dissertação propõe a simulação de emoções em ambientes mutiagentes através da criação de uma rede Bayesiana capaz de traduzir estímulos gerados neste ambiente em emoções. A utilização de redes Bayesianas combinadas à estrutura do modelo OCC busca a adição de imprevisibilidade ao modelo, além de fornecê-lo uma estrutura computacional. A aplicação do modelo proposto a um sistema multiagentes proporciona o estudo da influência das emoções sobre as ações e comportamento dos agentes, possibilitando um estudo de comparação entre os resultados obtidos ao se realizar uma simulação multiagentes clássica e uma simulação multiagentes contendo emoções. De forma a validar e avaliar seu funcionamento, é apresentado o estudo da aplicação da rede Bayesiana de emoções sobre um modelo multiagentes exemplo, observando as variações que as emoções provocam sobre o comportamento dos agentes.
Resumo:
Interações sociais são frequentemente descritas como trocas sociais. Na literatura, trocas sociais em Sistemas Multiagentes são objeto de estudo em diversos contextos, nos quais as relações sociais são interpretadas como trocas sociais. Dentre os problemas estudados, um problema fundamental discutido na literatura e a regulação¸ ao de trocas sociais, por exemplo, a emergência de trocas equilibradas ao longo do tempo levando ao equilíbrio social e/ou comportamento de equilíbrio/justiça. Em particular, o problema da regulação de trocas sociais e difícil quando os agentes tem informação incompleta sobre as estratégias de troca dos outros agentes, especificamente se os agentes tem diferentes estratégias de troca. Esta dissertação de mestrado propõe uma abordagem para a autorregulacao de trocas sociais em sistemas multiagentes, baseada na Teoria dos Jogos. Propõe o modelo de Jogo de Autorregulacão ao de Processos de Trocas Sociais (JAPTS), em uma versão evolutiva e espacial, onde os agentes organizados em uma rede complexa, podem evoluir suas diferentes estratégias de troca social. As estratégias de troca são definidas através dos parâmetros de uma função de fitness. Analisa-se a possibilidade do surgimento do comportamento de equilíbrio quando os agentes, tentando maximizar sua adaptação através da função de fitness, procuram aumentar o numero de interações bem sucedidas. Considera-se um jogo de informação incompleta, uma vez que os agentes não tem informações sobre as estratégias de outros agentes. Para o processo de aprendizado de estratégias, utiliza-se um algoritmo evolutivo, no qual os agentes visando maximizar a sua função de fitness, atuam como autorregulares dos processos de trocas possibilitadas pelo jogo, contribuindo para o aumento do numero de interações bem sucedidas. São analisados 5 diferentes casos de composição da sociedade. Para alguns casos, analisa-se também um segundo tipo de cenário, onde a topologia de rede é modificada, representando algum tipo de mobilidade, a fim de analisar se os resultados são dependentes da vizinhança. Alem disso, um terceiro cenário é estudado, no qual é se determinada uma política de influencia, quando as medias dos parâmetros que definem as estratégias adotadas pelos agentes tornam-se publicas em alguns momentos da simulação, e os agentes que adotam a mesma estratégia de troca, influenciados por isso, imitam esses valores. O modelo foi implementado em NetLogo.