898 resultados para motion cueing algorithm (MCA)
Resumo:
We present a novel numerical algorithm for the simulation of seismic wave propagation in porous media, which is particularly suitable for the accurate modelling of surface wave-type phenomena. The differential equations of motion are based on Biot's theory of poro-elasticity and solved with a pseudospectral approach using Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respectively. The time solver is a splitting algorithm that accounts for the stiffness of the differential equations. Due to the Chebyshev operator the grid spacing in the vertical direction is non-uniform and characterized by a denser spatial sampling in the vicinity of interfaces, which allows for a numerically stable and accurate evaluation of higher order surface wave modes. We stretch the grid in the vertical direction to increase the minimum grid spacing and reduce the computational cost. The free-surface boundary conditions are implemented with a characteristics approach, where the characteristic variables are evaluated at zero viscosity. The same procedure is used to model seismic wave propagation at the interface between a fluid and porous medium. In this case, each medium is represented by a different grid and the two grids are combined through a domain-decomposition method. This wavefield decomposition method accounts for the discontinuity of variables and is crucial for an accurate interface treatment. We simulate seismic wave propagation with open-pore and sealed-pore boundary conditions and verify the validity and accuracy of the algorithm by comparing the numerical simulations to analytical solutions based on zero viscosity obtained with the Cagniard-de Hoop method. Finally, we illustrate the suitability of our algorithm for more complex models of porous media involving viscous pore fluids and strongly heterogeneous distributions of the elastic and hydraulic material properties.
Resumo:
STUDY DESIGN:: Retrospective database- query to identify all anterior spinal approaches. OBJECTIVES:: To assess all patients with pharyngo-cutaneous fistulas after anterior cervical spine surgery. SUMMARY OF BACKGROUND DATA:: Patients treated in University of Heidelberg Spine Medical Center, Spinal Cord Injury Unit and Department of Otolaryngology (Germany), between 2005 and 2011 with the diagnosis of pharyngo-cutaneous fistulas. METHODS:: We conducted a retrospective study on 5 patients between 2005 and 2011 with PCF after ACSS, their therapy management and outcome according to radiologic data and patient charts. RESULTS:: Upon presentation 4 patients were paraplegic. 2 had PCF arising from one piriform sinus, two patients from the posterior pharyngeal wall and piriform sinus combined and one patient only from the posterior pharyngeal wall. 2 had previous unsuccessful surgical repair elsewhere and 1 had prior radiation therapy. In 3 patients speech and swallowing could be completely restored, 2 patients died. Both were paraplegic. The patients needed an average of 2-3 procedures for complete functional recovery consisting of primary closure with various vascularised regional flaps and refining laser procedures supplemented with negative pressure wound therapy where needed. CONCLUSION:: Based on our experience we are able to provide a treatment algorithm that indicates that chronic as opposed to acute fistulas require a primary surgical closure combined with a vascularised flap that should be accompanied by the immediate application of a negative pressure wound therapy. We also conclude that particularly in paraplegic patients suffering this complication the risk for a fatal outcome is substantial.
Resumo:
Introduction New evidence from randomized controlled and etiology of fever studies, the availability of reliable RDT for malaria, and novel technologies call for revision of the IMCI strategy. We developed a new algorithm based on (i) a systematic review of published studies assessing the safety and appropriateness of RDT and antibiotic prescription, (ii) results from a clinical and microbiological investigation of febrile children aged <5 years, (iii) international expert IMCI opinions. The aim of this study was to assess the safety of the new algorithm among patients in urban and rural areas of Tanzania.Materials and Methods The design was a controlled noninferiority study. Enrolled children aged 2-59 months with any illness were managed either by a study clinician using the new Almanach algorithm (two intervention health facilities), or clinicians using standard practice, including RDT (two control HF). At day 7 and day 14, all patients were reassessed. Patients who were ill in between or not cured at day 14 were followed until recovery or death. Primary outcome was rate of complications, secondary outcome rate of antibiotic prescriptions.Results 1062 children were recruited. Main diagnoses were URTI 26%, pneumonia 19% and gastroenteritis (9.4%). 98% (531/541) were cured at D14 in the Almanach arm and 99.6% (519/521) in controls. Rate of secondary hospitalization was 0.2% in each. One death occurred in controls. None of the complications was due to withdrawal of antibiotics or antimalarials at day 0. Rate of antibiotic use was 19% in the Almanach arm and 84% in controls.Conclusion Evidence suggests that the new algorithm, primarily aimed at the rational use of drugs, is as safe as standard practice and leads to a drastic reduction of antibiotic use. The Almanach is currently being tested for clinician adherence to proposed procedures when used on paper or a mobile phone
Resumo:
PURPOSE: To implement real-time myocardial strain-encoding (SENC) imaging in combination with tracking the tissue displacement in the through-plane direction. MATERIALS AND METHODS: SENC imaging was combined with the slice-following technique by implementing three-dimensional (3D) selective excitation. Certain adjustments were implemented to reduce scan time to one heartbeat. A total of 10 volunteers and five pigs were scanned on a 3T MRI scanner. Spatial modulation of magnetization (SPAMM)-tagged images were acquired on planes orthogonal to the SENC planes for comparison. Myocardial infarction (MI) was induced in two pigs and the resulting SENC images were compared to standard delayed-enhancement (DE) images. RESULTS: The strain values computed from SENC imaging with slice-following showed significant difference from those acquired without slice-following, especially during systole (P < 0.01). The strain curves computed from the SENC images with and without slice-following were similar to those computed from the orthogonal SPAMM images, with and without, respectively, tracking the tag line displacement in the strain direction. The resulting SENC images showed good agreement with the DE images in identifying MI in infarcted pigs. CONCLUSION: Correction of through-plane motion in real-time cardiac functional imaging is feasible using slice-following. The strain measurements are more accurate than conventional SENC measurements in humans and animals, as validated with conventional MRI tagging.
Resumo:
Este trabajo presenta un Algoritmo Genético (GA) del problema de secuenciar unidades en una línea de producción. Se tiene en cuenta la posibilidad de cambiar la secuencia de piezas mediante estaciones con acceso a un almacén intermedio o centralizado. El acceso al almacén además está restringido, debido al tamaño de las piezas.AbstractThis paper presents a Genetic Algorithm (GA) for the problem of sequencing in a mixed model non-permutation flowshop. Resequencingis permitted where stations have access to intermittent or centralized resequencing buffers. The access to a buffer is restricted by the number of available buffer places and the physical size of the products.
Resumo:
The objective of this paper is to introduce a fourth-order cost function of the displaced frame difference (DFD) capable of estimatingmotion even for small regions or blocks. Using higher than second-orderstatistics is appropriate in case the image sequence is severely corruptedby additive Gaussian noise. Some results are presented and compared to those obtained from the mean kurtosis and the mean square error of the DFD.
Resumo:
Este proyecto consiste en diseñar el algoritmo de control de un autogiro no tripulado. Su aplicación principal es llevar a cabo tareas rutinarias o peligrosas para el piloto como, por ejemplo, extinción de incendios, evaluación de riesgo químico o vigilancia de lugares de acceso restringido. Se realiza un estudio del movimiento del vehículo para obtener su modelo dinámico. A partir de las ecuaciones que describen su movimiento, se realiza una simulación numérica del vehículo. Se incorpora el controlador diseñado y se evalúa su funcionamiento. Finalmente, se implementa el sistema en un microcontrolador.
Resumo:
Breathing-induced bulk motion of the myocardium during data acquisition may cause severe image artifacts in coronary magnetic resonance angiography (MRA). Current motion compensation strategies include breath-holding or free-breathing MR navigator gating and tracking techniques. Navigator-based techniques have been further refined by the applications of sophisticated 2D k-space reordering techniques. A further improvement in image quality and a reduction of relative scanning duration may be expected from a 3D k-space reordering scheme. Therefore, a 3D k-space reordered acquisition scheme including a 3D navigator gated and corrected segmented k-space gradient echo imaging sequence for coronary MRA was implemented. This new zonal motion-adapted acquisition and reordering technique (ZMART) was developed on the basis of a numerical simulation of the Bloch equations. The technique was implemented on a commercial 1.5T MR system, and first phantom and in vivo experiments were performed. Consistent with the results of the theoretical findings, the results obtained in the phantom studies demonstrate a significant reduction of motion artifacts when compared to conventional (non-k-space reordered) gating techniques. Preliminary in vivo findings also compare favorably with the phantom experiments and theoretical considerations. Magn Reson Med 45:645-652, 2001.
Resumo:
Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).
Resumo:
La principal motivació d'aquest treball ha estat implementar l'algoritme Rijndael-AES en un full Sage-math, paquet de software matemàtic de lliure distribució i en actual desenvolupament, aprofitant les seves eines i funcionalitats integrades.
Resumo:
The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.
Resumo:
High dynamic performance of an electric motor is a fundamental prerequisite in motion control applications, also known as servo drives. Recent developments in the field of microprocessors and power electronics have enabled faster and faster movements with an electric motor. In such a dynamically demanding application, the dimensioning of the motor differs substantially from the industrial motor design, where feasible characteristics of the motor are for example high efficiency, a high power factor, and a low price. In motion control instead, such characteristics as high overloading capability, high-speed operation, high torque density and low inertia are required. The thesis investigates how the dimensioning of a high-performance servomotor differs from the dimensioning of industrial motors. The two most common servomotor types are examined; an induction motor and apermanent magnet synchronous motor. The suitability of these two motor types indynamically demanding servo applications is assessed, and the design aspects that optimize the servo characteristics of the motors are analyzed. Operating characteristics of a high performance motor are studied, and some methods for improvements are suggested. The main focus is on the induction machine, which is frequently compared to the permanent magnet synchronous motor. A 4 kW prototype induction motor was designed and manufactured for the verification of the simulation results in the laboratory conditions. Also a dynamic simulation model for estimating the thermal behaviour of the induction motor in servo applications was constructed. The accuracy of the model was improved by coupling it with the electromagnetic motor model in order to take into account the variations in the motor electromagnetic characteristics due to the temperature rise.
Resumo:
Observers are often required to adjust actions with objects that change their speed. However, no evidence for a direct sense of acceleration has been found so far. Instead, observers seem to detect changes in velocity within a temporal window when confronted with motion in the frontal plane (2D motion). Furthermore, recent studies suggest that motion-in-depth is detected by tracking changes of position in depth. Therefore, in order to sense acceleration in depth a kind of second-order computation would have to be carried out by the visual system. In two experiments, we show that observers misperceive acceleration of head-on approaches at least within the ranges we used [600-800 ms] resulting in an overestimation of arrival time. Regardless of the viewing condition (only monocular or monocular and binocular), the response pattern conformed to a constant velocity strategy. However, when binocular information was available, overestimation was highly reduced.