875 resultados para modeling of data sources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that it is possible to link multi-chain molecular dynamics simulations with the tube model using a single chain slip-links model as a bridge. This hierarchical approach allows significant speed up of simulations, permitting us to span the time scales relevant for a comparison with the tube theory. Fitting the mean-square displacement of individual monomers in molecular dynamics simulations with the slip-spring model, we show that it is possible to predict the stress relaxation. Then, we analyze the stress relaxation from slip-spring simulations in the framework of the tube theory. In the absence of constraint release, we establish that the relaxation modulus can be decomposed as the sum of contributions from fast and longitudinal Rouse modes, and tube survival. Finally, we discuss some open questions regarding possible future directions that could be profitable in rendering the tube model quantitative, even for mildly entangled polymers

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radar images and numerical simulations of three shallow convective precipitation events over the Coastal Range in western Oregon are presented. In one of these events, unusually well-defined quasi-stationary banded formations produced large precipitation enhancements in favored locations, while varying degrees of band organization and lighter precipitation accumulations occurred in the other two cases. The difference between the more banded and cellular cases appeared to depend on the vertical shear within the orographic cap cloud and the susceptibility of the flow to convection upstream of the mountain. Numerical simulations showed that the rainbands, which appeared to be shear-parallel convective roll circulations that formed within the unstable orographic cap cloud, developed even over smooth mountains. However, these banded structures were better organized, more stationary, and produced greater precipitation enhancement over mountains with small-scale topographic obstacles. Low-amplitude random topographic roughness elements were found to be just as effective as more prominent subrange-scale peaks at organizing and fixing the location of the orographic rainbands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)(1) and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.: R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data. 2000, 29, 167) 2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a. value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100,. 19398)4 of the bond dissociation energy, D-298(BrO-NO2) = 118 kJ mol(-1), corresponding to Delta H-0(circle) = 114.3 kJ mol(-1) at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing Delta H-0(circle) to an unrealistically high value (149.3 kJ mol(-1)) or by increasing , the average energy transferred in a downward collision, to an unusually large value (> 5000 cm(-1)). The discrepancy could also be reduced by making all overall rotations fully active. The system was relatively insensitive to changing the moments of inertia in the transition state to increase the centrifugal effect. The possibility of involvement of BrOONO was tested and cannot account for the difficulties of fitting the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a physical model of ultrafast evolution of an initial electron distribution in a quantum wire. The electron evolution is described by a quantum-kinetic equation accounting for the interaction with phonons. A Monte Carlo approach has been developed for solving the equation. The corresponding Monte Carlo algorithm is NP-hard problem concerning the evolution time. To obtain solutions for long evolution times with small stochastic error we combine both variance reduction techniques and distributed computations. Grid technologies are implemented due to the large computational efforts imposed by the quantum character of the model.