934 resultados para mixing and phase separation
Resumo:
Mixed micellization and surface properties of cationic and nonionic surfactants dimethyl decyl-, tetradecyl- and hexadecyl phosphineoxide mixtures are studied using conductivity and surface tension measurements. The models of Rubingh, Rosen, and Clint, are used to obtain the interaction parameter, minimum area per molecule, mixed micelle composition, free energies of mixing and activity coefficients. The micellar mole fractions were always higher than ideal values indicating high contributions of cationics in mixed micelles. Activity coefficients were less than unity indicating synergism in micelles. The negative free energies of mixing showed the stability of the surfactants in the mixed micelles.
Resumo:
AbstractA device comprising a lab-made chamber with mechanical stirring and computer-controlled solenoid valves is proposed for the mechanization of liquid-liquid extractions. The performance was demonstrated by the extraction of ethanol from biodiesel as a model of the extraction of analytes from organic immiscible samples to an aqueous medium. The volumes of the sample and extractant were precisely defined by the flow-rates and switching times of the valves, while the mechanic stirring increased interaction between the phases. Stirring was stopped for phase separation, and a precise time-control also allowed a successful phase separation (i.e., the absence of the organic phase in the aqueous extract). In the model system, a linear response between the analytical response and the number of extractions was observed, indicating the potential for analyte preconcentration in the extract. The efficiency and reproducibility of the extractions were demonstrated by recoveries of ethanol spiked to biodiesel samples within 96% and 100% with coefficients of variation lower than 3.0%.
Resumo:
In this study, a novel hybrid composite based on biodegradable hydrogel and Portland cement with promising technological properties was reported. In the first step, a full 23 with central point factorial design was utilized to obtain the enhanced polyacrylamide-carboxymethylcellulose hydrogel compositions. A mathematical model was devised, indicating that the 3 main variables were significant and the AAm and MBAAm variables positively contributed to the mode and showing that the CMC variable had the opposite contribution. In the second step, these compositions were mixed with Portland cement to obtain the hybrid composites. The presence of cement improved the mechanical properties of polymeric matrices, and electronic microscopic micrographics revealed that the hydrogels were well adhered to the cement phase and no phase separation between hydrogel and cement was detected. Finally, using the energy dispersive X-ray technique, the elements Na, Mg, Al, Si, S, K, Ca and Fe were detected in the polymeric matrix, consistent with the hybrid composite formation.
Resumo:
Diplomityössä käsitellään ydinvoimalaitoksen kostean höyryn alueella toimivien höyryturbiinien toiminnan erityispiirteitä. Tarkemmin työssä keskitytään Loviisan ydinvoimalaitoksen turbiiniprosessiin. Tavoitteena on selvittää veden tiivistymistä höyryvirrassa, sen erotusta höyrystä turbiineissa sekä määrittää laitokselle todellinen paisuntakäyrä. Työssä selvitettiin veden tiivistymistä höyryvirtaan kirjallisuuden ja prosessista saatujen tietojen perusteella. Lisäksi työssä tutustuttiin suurien nykyaikaisten kostean höyryn alueella toimivien turbiinien vedenerotukseen ja sen pohjalta arvioitiin Loviisan ydinvoimalaitoksen turbiinin kosteudenerotusta. Näiden tietojen avulla saatiin mallinnettua kostean höyryn paisuntakäyrä Loviisan ydinvoimalaitoksen turbiineille. Työssä perehdyttiin lisäksi ulosvirtauskanavan toimintaan. Diplomityön puitteissa ei perehdytty yksityiskohtaisesti veden tiivistymiseen höyryvirrassa, vaan aihe ansaitsee tarkempaa tutkimusta. Kosteuden erotustehokkuuden arviointi todellisessa prosessissa ilman mittauksista saatavaa tietoa on vaikeata, mutta toimenpiteisiin lisäinformaation saamiseksi Loviisan ydinvoimalaitoksen turbiiniprosessista on ryhdytty. Työssä tehtyjen selvitysten avulla saatiin arvokasta tietoa turbiinikoneikon toiminnasta ja sen tehokkuuden parantamisesta.
Resumo:
The UPM-Kymmene Oyj Pietarsaari pulp and paper Mill biological wastewater treatment plant was built in the 1980's and the plant has been in use ever since. During the past years there have been problems with deviations. The wastewater treatment plant needs update, especially the aeration basin, where the old surface aerators cannot produce enough mixing and indroduce oxygen enough to the wastewater. In this thesis how extra aeration with oxygen affects the wastewater treatment plant effluent was studied. In the literature part the main focus is in aeration devices, which can be used in biological wastewater treatment. The target is to compare different kind of aerators, which are suitable for pulp and paper wastewater treatment. Studies show, that EDI-aerators are commonly used and also most suitable. In the experimental part, the focus is on the Pietarsaari Mills wastewater treatment plant and oxygen aeration during autumn 2008. This thesis presents the results of the trial run. Studies show, that extra oxygen devices can produce lot a of mixing and the oxygenation capacity was more than what the micro-organisms needed. The effect on sludge quality could not been seen during the trial runs.
Resumo:
This MSc work was done in the project of BIOMECON financed by Tekes. The prime target of the research was, to develop methods for separation and determination of carbohydrates (sugars), sugar acids and alcohols, and some other organic acids in hydrolyzed pulp samples by capillary electrophoresis (CE) using UV detection. Aspen, spruce, and birch pulps are commonly used for production of papers in Finland. Feedstock components in pulp predominantly consist of carbohydrates, organic acids, lignin, extractives, and proteins. Here in this study, pulps have been hydrolyzed in analytical chemistry laboratories of UPM Company and Lappeenranta University in order to convert them into sugars, acids, alcohols, and organic acids. Foremost objective of this study was to quantify and identify the main and by-products in the pulp samples. For the method development and optimization, increased precision in capillary electrophoresis was accomplished by calculating calibration data of 16 analytes such as D-(-)-fructose, D(+)-xylose, D(+)-mannose, D(+)-cellobiose, D-(+)-glucose, D-(+)-raffinose, D(-)-mannitol, sorbitol, rhamnose, sucrose, xylitol, galactose, maltose, arabinose, ribose, and, α-lactose monohydratesugars and 16 organic acids such as D-glucuronic, oxalic, acetic, propionic, formic, glycolic, malonic, maleic, citric, L-glutamic, tartaric, succinic, adipic, ascorbic, galacturonic, and glyoxylic acid. In carbohydrate and polyalcohol analyses, the experiments with CE coupled to direct UV detection and positive separation polarity was performed in 36 mM disodium hydrogen phosphate electrolyte solution. For acid analyses, CE coupled indirect UV detection, using negative polarity, and electrolyte solution made of 2,3 pyridinedicarboxylic acid, Ca2+ salt, Mg2+ salts, and myristyltrimethylammonium hydroxide in water was used. Under optimized conditions, limits of detection, relative standard deviations and correlation coefficients of each compound were measured. The optimized conditions were used for the identification and quantification of carbohydrates and acids produced by hydrolyses of pulp. The concentrations of the analytes varied between 1 mg – 0.138 g in liter hydrolysate.
Resumo:
Tässä työssä tutkittiin pohjaöljy-yksikössä sijaitsevan tislauskolonnin pohjaosan likaantumista ja likaantumisen vähentämistä kolonnin sisärakenteita muuttamalla. Tislauskolonnin likaantuminen aiheutuu raskaista molekyyleistä, asfalteeneistä, joita pohjaöljy sisältää. Pohjaöljyä krakattaessa kevyemmiksi tisleiksi asfalteenien liukoisuus pienenee. Asfalteenimolekyylit alkavat lopulta yhdistyä, minkä seurauksena muodostuu asfalteenejä sisältävä hiilimäinen mesofaasi. Radikaalireaktioiden kautta mesofaasista muodostuu koksia. Mesofaasi tarttuu tiukasti tislauskolonnin sisärakenteiden pinnoille aiheuttaen koksaantumista. Koksaantumisen seurauksena strippausvälipohjina käytettävien suihkupohjien tislausteho huononee. Koksaantumisen johdosta suihkupohjien ja kolonnin pohjaosan tukkeentumisen riski kasvaa. Suihkupohjien likaantumista pyritään vähentämään muuttamalla suihkupohjat sileiksi välipohjiksi ilman patolevyjä ja reikiä. Tällä tavoin saadaan neste virtaamaan vapaasti välipohjalta toiselle, mikä vähentää mesofaasin ja koksin muodostumista. Likaantumista voitaisiin myös vähentää tuomalla jäähdytyskiertopalautus välipohjille, minkä avulla neste saadaan jäähtymään nopeammin alle lämpökrakkautumislämpötilan, mikä vähentää koksaantumista. Kolonnin pohjaosassa sijaitsevan pohjaseulan likaantumista voitaisiin vähentää harventamalla pohjaseulan tankoja, mikä vähentää koksin tarttumapinta-alaa. Likaantumisen online-seurantaa saadaan parannettua lisäämällä pintalämpötilamittauksia järjestelmällisesti samoille korkeuksille kolonnin vastakkaisille puolille.
Resumo:
Collared peccaries (Peccary tajacu) are among the most hunted species in Latin America due the appreciation of their pelt and meat. In order to optimize breeding management of captive born collared peccaries in semiarid conditions, the objective was to describe and correlate the changes in the ovarian ultrasonographic pattern, hormonal profile, vulvar appearance, and vaginal cytology during the estrus cycle in this species. During 45 days, females (n=4) were subjected each three days to blood collection destined to hormonal dosage by enzyme immunoassay (EIA). In the same occasions, evaluation of external genitalia, ovarian ultrasonography and vaginal cytology were conducted. Results are presented as means and standard deviations. According to hormonal dosage, six estrous cycles were identified as lasting 21.0 ± 5.7 days, being on average 6 days for the estrogenic phase and 15 days for the progesterone phase. Estrogen presented mean peak values of 55.6 ± 20.5 pg/mL. During the luteal phase, the high values for progesterone were 35.3 ± 4.4 ng/mL. The presence of vaginal mucus, a reddish vaginal mucosa and the separation of the vulvar lips were verified in all animals during the estrogenic peak. Through ultrasonography, ovarian follicles measuring 0.2±0.1 cm were visualized during the estrogen peak. Corpora lutea presented hyperechoic regions measuring 0.4±0.2 cm identified during luteal phase. No significant differences (P>0.05) between proportions of vaginal epithelial cells were identified when comparing estrogenic and progesterone phases. In conclusion, female collared peccaries, captive born in semiarid conditions, have an estral cycle that lasts 21.0±5.7 days, with estrous signs characterized by vulvar lips edema and hyperemic vaginal mucosa, coinciding with developed follicles and high estrogen levels.
Resumo:
We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.
Resumo:
Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.
Resumo:
It is well known that the interaction of polyelectrolytes with oppositely charged surfactants leads to an associative phase separation; however, the phase behavior of DNA and oppositely charged surfactants is more strongly associative than observed in other systems. A precipitate is formed with very low amounts of surfactant and DNA. DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density there are strong attractive ion correlation effects. Techniques like phase diagram determinations, fluorescence microscopy, and ellipsometry were used to study these systems. The interaction between DNA and catanionic mixtures (i.e., mixtures of cationic and anionic surfactants) was also investigated. We observed that DNA compacts and adsorbs onto the surface of positively charged vesicles, and that the addition of an anionic surfactant can release DNA back into solution from a compact globular complex between DNA and the cationic surfactant. Finally, DNA interactions with polycations, chitosans with different chain lengths, were studied by fluorescence microscopy, in vivo transfection assays and cryogenic transmission electron microscopy. The general conclusion is that a chitosan effective in promoting compaction is also efficient in transfection.
Resumo:
The objective of the present study was to evaluate breathing pattern, thoracoabdominal motion and muscular activity during three breathing exercises: diaphragmatic breathing (DB), flow-oriented (Triflo II) incentive spirometry and volume-oriented (Voldyne) incentive spirometry. Seventeen healthy subjects (12 females, 5 males) aged 23 ± 5 years (mean ± SD) were studied. Calibrated respiratory inductive plethysmography was used to measure the following variables during rest (baseline) and breathing exercises: tidal volume (Vt), respiratory frequency (f), rib cage contribution to Vt (RC/Vt), inspiratory duty cycle (Ti/Ttot), and phase angle (PhAng). Sternocleidomastoid muscle activity was assessed by surface electromyography. Statistical analysis was performed by ANOVA and Tukey or Friedman and Wilcoxon tests, with the level of significance set at P < 0.05. Comparisons between baseline and breathing exercise periods showed a significant increase of Vt and PhAng during all exercises, a significant decrease of f during DB and Voldyne, a significant increase of Ti/Ttot during Voldyne, and no significant difference in RC/Vt. Comparisons among exercises revealed higher f and sternocleidomastoid activity during Triflo II (P < 0.05) with respect to DB and Voldyne, without a significant difference in Vt, Ti/Ttot, PhAng, or RC/Vt. Exercises changed the breathing pattern and increased PhAng, a variable of thoracoabdominal asynchrony, compared to baseline. The only difference between DB and Voldyne was a significant increase of Ti/Ttot compared to baseline. Triflo II was associated with higher f values and electromyographic activity of the sternocleidomastoid. In conclusion, DB and Voldyne showed similar results while Triflo II showed disadvantages compared to the other breathing exercises.
Resumo:
Our objective was to determine if automated peritoneal dialysis (APD) leads to changes in nutritional parameters of patients treated by continuous ambulatory peritoneal dialysis (CAPD). Twenty-six patients (15 males; 50.5 ± 14.3 years) were evaluated during CAPD while training for APD and after 3 and 6 months of APD. Body fat was assessed by the sum of skinfold thickness and the other body compartments were assessed by bioelectrical impedance. During the 6-month follow-up, 12 patients gained more than 1 kg (GW group), 8 patients lost more than 1 kg (LW group), and 6 patients maintained body weight (MW group). Except for length on dialysis that was longer for the LW group compared with the GW group, no other differences were found between the groups at baseline. After 6 months on APD, the LW group had a reduction in body fat (24.5 ± 7.7 vs 22.1 ± 7.3 kg; P = 0.01), body cell mass (22.6 ± 6.2 vs 21.6 ± 5.8 kg, P = 0.02) and phase angle (5.4 ± 0.9 vs 5.1 ± 0.8 degrees, P = 0.004). In the GW group, body fat (25 ± 7.6 vs 27.2 ± 7.6 kg, P = 0.001) and body cell mass (20.1 ± 3.9 vs 20.8 ± 4.0 kg, P = 0.05) were increased. In the present study, different patterns of change in body composition were found. The length of previous dialysis treatment seems to be the most important factor in determining these nutritional modifications.
Resumo:
A method to synthesize ethyl β-ᴅ-glucopyranoside (BEG) was searched. Feasibility of different ion exchange resins was examined to purify the product from the synthetic binary solution of BEG and glucose. The target was to produce at least 50 grams of 99 % pure BEG with a scaled up process. Another target was to transfer the batch process into steady-state recycle chromatography process (SSR). BEG was synthesized enzymatically with reverse hydrolysis utilizing β-glucosidase as a catalyst. 65 % of glucose reacted with ethanol into BEG during the synthesis. Different ion exchanger based resins were examined to separate BEG from glucose. Based on batch chromatography experiments the best adsorbent was chosen between styrene based strong acid cation exchange resins (SAC) and acryl based weak acid cation exchange resins (WAC). CA10GC WAC resin in Na+ form was chosen for the further separation studies. To produce greater amounts of the product the batch process was scaled up. The adsorption isotherms for the components were linear. The target purity was possible to reach already in batch without recycle with flowrate and injection size small enough. 99 % pure product was produced with scaled-up batch process. Batch process was transferred to SSR process utilizing the data from design pulse chromatograms and Matlab simulations. The optimal operating conditions for the system were determined. Batch and SSR separation results were compared and by using SSR 98 % pure products were gained with 40 % higher productivity and 40 % lower eluent consumption compared to batch process producing as pure products.
Resumo:
An analytical model for bacterial accumulation in a discrete fractllre has been developed. The transport and accumlllation processes incorporate into the model include advection, dispersion, rate-limited adsorption, rate-limited desorption, irreversible adsorption, attachment, detachment, growth and first order decay botl1 in sorbed and aqueous phases. An analytical solution in Laplace space is derived and nlln1erically inverted. The model is implemented in the code BIOFRAC vvhich is written in Fortran 99. The model is derived for two phases, Phase I, where adsorption-desorption are dominant, and Phase II, where attachment-detachment are dominant. Phase I ends yvhen enollgh bacteria to fully cover the substratllm have accllillulated. The model for Phase I vvas verified by comparing to the Ogata-Banks solution and the model for Phase II was verified by comparing to a nonHomogenous version of the Ogata-Banks solution. After verification, a sensitiv"ity analysis on the inpllt parameters was performed. The sensitivity analysis was condllcted by varying one inpllt parameter vvhile all others were fixed and observing the impact on the shape of the clirve describing bacterial concentration verSllS time. Increasing fracture apertllre allovvs more transport and thus more accllffilliation, "Vvhich diminishes the dllration of Phase I. The larger the bacteria size, the faster the sllbstratum will be covered. Increasing adsorption rate, was observed to increase the dllration of Phase I. Contrary to the aSSllmption ofllniform biofilm thickness, the accllffilliation starts frOll1 the inlet, and the bacterial concentration in aqlleous phase moving towards the olitiet declines, sloyving the accumulation at the outlet. Increasing the desorption rate, redllces the dliration of Phase I, speeding IIp the accllmlilation. It was also observed that Phase II is of longer duration than Phase I. Increasing the attachment rate lengthens the accliffililation period. High rates of detachment speeds up the transport. The grovvth and decay rates have no significant effect on transport, althollgh increases the concentrations in both aqueous and sorbed phases are observed. Irreversible adsorption can stop accllillulation completely if the vallIes are high.