909 resultados para migratory connectivity
Resumo:
This study reports avian malaria caused by Plasmodium relictum in Magellanic Penguins (Spheniscus magellanicus) from Sao Paulo Zoo. The disease was highly infective among the birds and was clinically characterized by its acute course and high mortality. The penguins of Sao Paulo Zoo were housed for at least 2 years without malaria; however, they had always been maintained in an enclosure protected from mosquito exposure during the night period. When they presented pododermatitis, they were freed at night for a short period. sao Paulo Zoo is located in one of the last forest remnants of the city, an area of original Atlantic forest. In the winter, the space destined for Zoo birds is shared with migratory species. Hence the possibility exists that the disease was transmitted to the penguins by mosquitoes that had previously bitten infected wild birds. Avian malaria parasites are transmitted mainly by mosquitoes of the genera Aedes and Culex, common vectors in the Atlantic forest. In this study, one Culex (Cux.) sp. was found, infected with P. relictum. There are diverse problems in housing distinct species of animals in captivity, principally when occupying the same enclosure, since it facilitates the transmission of diseases with indirect cycles, as is the case of Plasmodium spp., because certain species that cause discrete infections in some bird species can become a serious danger for others, especially penguins, which do not possess natural resistance. Thus, serious implications exist for periodically testing and administrating malaria therapy in captive penguins potentially exposed to mosquitoes during the night period, as well as other captive birds from Sao Paulo Zoo. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The chi-conopeptides MrIA and MrIB are 13-residue peptides with two disulfide bonds that inhibit human and rat norepinephrine transporter systems and are of significant interest for the design of novel drugs involved in pain treatment. In the current study we have determined the solution structure of MrIA using NMR spectroscopy. The major element of secondary structure is a hairpin with the two strands connected by an inverse gamma-turn. The residues primarily involved in activity have previously been shown to be located in the turn region (Sharpe, I. A.; Palant, E.: Schroder, C. L; Kaye, D. M.; Adams, D. I.; Alewood, P. F.; Lewis, R. J. J Biol Client 2003, 278, 40317-40323), which appears to be more flexible than the beta-strands based on disorder in the ensemble of calculated structures. Analogues of MrIA with N-terminal truncations indicate that the N-terminal residues play a role in defining a stable conformation and the native disulfide connectivity. In particular, noncovalent interactions between Val3 and Hypl2 are likely to be involved in maintaining a stable conformation. The N-terminus also affects activity, as a single N-terminal deletion introduced additional pharmacology at rat vas deferens, while deleting the first two amino acids reduced chi-conopeptide potency. This article was originally published online as an accepted preprint. The Published Online date corresponds to the preprint version. You can request a copy of the preprint by entailing the Biopolymers editorial office at biopolymers@wiley.com (c) 2005 Wiley Periodicals, Inc.
Resumo:
The BOLD contrast signal history determined by lagged Unear correlation has a significant contribution to functional connectivity in activation data sets. It has been demonstrated that in resting state fMRI data, the major contribution to synchronous correlation between functionally connected areas arises from low frequency contributions (
Resumo:
Individuals with Autism Spectrum Disorder (ASD) are generally thought to have impaired attentional and executive function upon which all their cognitive and behaviour functions are based. Mental Rotation is a recognized visuo-spatial task, involving spatial working memory, known to involve activation in the fronto-parietal networks. To elucidate the functioning of fronto-parietal networks in ASD, the aim of this study was to use fMRI techniques with a mental rotation task, to characterize the underlying functional neural system. Sixteen male participants (seven highfunctioning autism or Asperger's syndrome; nine ageand performance IQ-matched controls) underwent fMRI. Participants were presented with 18 baseline and 18 rotation trials, with stimuli rotated 3- dimensionaUy (45°-180°). Data were acquired on a 3- Tesla scanner. The most widely accepted area reported to be involved in processing of visuo-spatial information. Posterior Parietal Cortex, was found to be activated in both groups, however, the ASD group showed decreased activation in cortical and subcortical frontal structures that are highly interconnected, including lateral and medial Brodmann area 6, frontal eye fields, caudate, dorsolateral prefrontal cortex and anterior cingulate. The suggested connectivity between these regions indicates that one or more circuits are impaired as a result of the disorder. In future it is hoped that we are able to identify the possible point of origin of this dysfunction, or indeed if the entire network is dysfunctional.
Resumo:
In recent years our understanding of the control of ion and urea metabolism in elasmobranch fish has increased with many more species being investigated. This has demonstrated that many species regarded as stenohaline marine are at least, partially euryhaline and may survive in environments less concentrated than full seawater. This presentation will review these recent findings and then compare the osmoregulatory strategies of a partially euryhaline species, Scyliorhinus canicula, with a fully euryhaline migratory species Carcharinus leucas. This will include new data for both species and will generate new models for the control of ion and urea metabolism in elasmobranchs on which to base future research.
Resumo:
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone In. the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 mu g/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin(-/-) mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Chronic obstructive pulmonary disease (COPD) is associated with osteoporosis and fragility fractures. The objectives of this study were to assess static and dynamic indices of cancellous and cortical bone structure in postmenopausal women with COPD. Twenty women with COPD who had not received chronic oral glucocorticoids underwent bone biopsies after double tetracycline labeling. Biopsies were analyzed by histomorphometry and mu CT and compared with age-matched controls. Distribution of the patients according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) was: Type I (15%), Type II (40%), Type III (30%), and Type IV (15%). Mean (+/-SD) cancellous bone volume (15.20 +/- 5.91 versus 21.34 +/- 5.53%, p = .01), trabecular number (1.31 +/- 0.26 versus 1.77 +/- 0.51/mm, p = .003), and trabecular thickness (141 +/- 23 versus 174 +/- 36 mu m, p = .006) were lower in patients than in controls. Connectivity density was lower in COPD (5.56 +/- 2.78 versus 7.94 +/- 3.08 mu m, p = .04), and correlated negatively with smoking (r = -0.67; p = .0005). Trabecular separation (785 +/- 183 versus 614 +/- 136 mu m, p = .01) and cortical porosity (4.11 +/- 1.02 versus 2.32 +/- 0.94 voids/mm(2); p < .0001) were higher in COPD while cortical width (458 +/- 214 versus 762 +/- 240 mu m; p < .0001) was lower. Dynamic parameters showed significantly lower mineral apposition rate in COPD (0.56 +/- 0.16 versus 0.66 +/- 0.12 mu m/day; p = .01). Patients with more severe disease, GOLD III and IV, presented lower bone formation rate than GOLDI and II (0.028 +/- 0.009 versus 0.016 +/- 0.011 mu m(3)/mu m(2)/day;p = 04). This is the first evaluation of bone microstructure and remodeling in COPD. The skeletal abnormalities seen in cancellous and cortical bone provide an explanation for the high prevalence of vertebral fractures in this disease. (C) 2010 American Society for Bone and Mineral Research.
Resumo:
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 mu g) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.
Resumo:
Structural magnetic resonance imaging and postmortem studies showed volume loss in the hippocampus in schizophrenia. The noted tissue reduction in the posterior section suggests that some cellular subfractions within this structure might be reduced in schizophrenia. To address this, we investigated numbers and densities of neurons, oligodendrocytes and astrocytes in the posterior hippocampal subregions in postmortem brains from ten patients with schizophrenia and ten matched controls using design-based stereology performed on Nissl-stained sections. Compared to the controls, the patients with schizophrenia showed a significant decrease in the mean number of oligodendrocytes in the left and right CA4. This is the first finding of reduced numbers of oligodendrocytes in CA4 of the posterior part of the hippocampus in schizophrenia. Our results are in line with earlier findings in the literature concerning decreased numbers of oligodendrocytes in the prefrontal cortex in schizophrenia. Our results may indicate disturbed connectivity of the CA4 of the posterior part of the hippocampus in schizophrenia and, thus, contribute to the growing number of studies showing the involvement of posterior hippocampal pathology in the pathophysiology of schizophrenia.
Resumo:
Neurobiological models support an involvement of white matter tracts in the pathophysiology of obsessive-compulsive disorder (OCD), but there has been little systematic evaluation of white matter volumes in OCD using magnetic resonance imaging (MRI). We investigated potential differences in the volume of the cingulum bundle (CB) and anterior limb of internal capsule (ALIC) in OCD patients (n = 19) relative to asymptomatic control subjects (n = 15). White matter volumes were assessed using a 1.5T MRI scanner. Between-group comparisons were carried out after spatial normalization and image segmentation using optimized voxel-based morphometry. Correlations between regional white matter volumes in OCD subjects and symptom severity ratings were also investigated. We found significant global white matter reductions in OCD patients compared to control subjects. The voxel-based search for regional abnormalities (with covariance for total white matter volumes) showed no specific white matter volume deficits in brain portions predicted a priori to be affected in OCD (CB and ALIC). However, large clusters of significant positive correlation with OCD severity scores were found bilaterally on the ALIC. These findings provide evidence of OCD-related ALIC abnormalities and suggest a connectivity dysfunction within frontal-striatal-thalamic-cortical circuits. Further studies are warranted to better define the role of such white matter alterations in the pathophysiology of OCD, and may provide clues for a more effectively targeting of neurosurgical treatments for OCD. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Variables influencing decision-making in real settings, as in the case of voting decisions, are uncontrollable and in many times even unknown to the experimenter. In this case, the experimenter has to study the intention to decide (vote) as close as possible in time to the moment of the real decision (election day). Here, we investigated the brain activity associated with the voting intention declared 1 week before the election day of the Brazilian Firearms Control Referendum about prohibiting the commerce of firearms. Two alliances arose in the Congress to run the campaigns for YES (for the prohibition of firearm commerce) and NO (against the prohibition of firearm commerce) voting. Time constraints imposed by the necessity of studying a reasonable number (here, 32) of voters during a very short time (5 days) made the EEG the tool of choice for recording the brain activity associated with voting decision. Recent fMRI and EEG studies have shown decision-making as a process due to the enrollment of defined neuronal networks. In this work, a special EEG technique is applied to study the topology of the voting decision-making networks and is compared to the results of standard ERP procedures. The results show that voting decision-making enrolled networks in charge of calculating the benefits and risks of the decision of prohibiting or allowing firearm commerce and that the topology of such networks was vote-(i.e., YES/NO-) sensitive. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Obstetric complications play a role in the pathophysiology of schizophrenia. However, the biological consequences during neurodevelopment until adulthood are unknown. Microarrays have been used for expression profiling in four brain regions of a rat model of neonatal hypoxia as a common factor of obstetric complications. Animals were repeatedly exposed to chronic hypoxia from postnatal (PD) day 4 through day 8 and killed at the age of 150 days. Additional groups of rats were treated with clozapine from PD 120-150. Self-spotted chips containing 340 cDNAs related to the glutamate system (""glutamate chips"") were used. The data show differential (up and down) regulations of numerous genes in frontal (FR), temporal (TE) and parietal cortex (PAR), and in caudate putamen (CPU), but evidently many more genes are upregulated in frontal and temporal cortex, whereas in parietal cortex the majority of genes are downregulated. Because of their primary presynaptic occurrence, five differentially expressed genes (CPX1, NPY, NRXN1, SNAP-25, and STX1A) have been selected for comparisons with clozapine-treated animals by qRT-PCR. Complexin 1 is upregulated in FR and TE cortex but unchanged in PAR by hypoxic treatment. Clozapine downregulates it in FR but upregulates it in PAR cortex. Similarly, syntaxin 1A was upregulated in FR, but downregulated in TE and unchanged in PAR cortex, whereas clozapine downregulated it in FR but upregulated it in PAR cortex. Hence, hypoxia alters gene expression regionally specific, which is in agreement with reports on differentially expressed presynaptic genes in schizophrenia. Chronic clozapine treatment may contribute to normalize synaptic connectivity.
Resumo:
Context Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulatioin in BD. Objective: To use tract-based spatial statistics (TBSS) to examine VVM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design: Cross-sectional, case-control, whole-brain DTI using TBSS. Setting: University research institute. Participants: Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type 1 (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures: Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results: Subjects with BD vs controls had significantly greater FA (t > 3.0, P <=.05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P <=.05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P <.01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P <.01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions: To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.
Resumo:
The pathophysiology of hepatic osteodystrophy (HO) remains poorly understood. Our aim was to evaluate bone histomorphometry, biomechanical properties, and the role of the growth hormone (GH)/insulin-like growth factor-I (IGF-I) system in the onset of this disorder. Forty-six male Wistar rats were divided into two groups: sham-operated (SO, n = 23) and bile duct-ligated (BDL, n = 23). Rats were killed on day 30 postoperatively. Immunohistochemical expression of IGF-I and GH receptor was determined in liver tissue and in the proximal growth plate cartilage of the left tibia. Histomorphometric analysis was performed in the right tibia, and the right femur was used for biomechanical analysis. The maximal force at fracture and the stiffness of the mid-shaft femur were, respectively, 53% and 24% lower in BDL compared to SO. Histomorphometric measurements showed low cancellous bone volume and decreased cancellous bone connectivity in BDL, compatible with osteoporosis. This group also showed increased mineralization lag time, indicating disturbance in bone mineralization. Serum levels of IGF-I were lower in BDL (basal 1,816 +/- A 336 vs. 30 days 1,062 +/- A 191 ng/ml, P < 0.0001). BDL also showed higher IGF-I expression in the liver tissue but lower IGF-I and GH receptor expression in growth plate cartilage than SO. Osteoporosis is the most important feature of HO; BDL rats show striking signs of reduced bone volume and decreased bone strength, as early as after 1 month of cholestasis. The endocrine and autocrine-paracrine IGF-I systems are deeply affected by cholestasis. Further studies will be necessary to establish their role in the pathogenesis of HO.