970 resultados para microbial diversity
Resumo:
The size of the soil microbial biomass carbon (SMBC) has been proposed as a sensitive indicator for measuring the adverse effects of contaminants on the soil microbial community. In this study of Australian agricultural systems, we demonstrated that field variability of SMBC measured using the fumigation-extraction procedure limited its use as a robust ecotoxicological endpoint. The SMBC varied up to 4-fold across control samples collected from a single field site, due to small-scale spatial heterogeneity in the soil physicochemical environment. Power analysis revealed that large numbers of replicates (3-93) were required to identify 20% or 50% decreases in the size of the SMBC of contaminated soil samples relative to their uncontaminated control samples at the 0.05% level of statistical significance. We question the value of the routine measurement of SMBC as an ecotoxicological endpoint at the field scale, and suggest more robust and predictive microbiological indicators.
Resumo:
2,4-Dinitrophenol and paranitrophenol are two major soil pollutants which are known to be metabolized by different soil microbes. Relative phytotoxicities of these parent compounds and their metabolic transformation products to the growth of cucumber seedlings were assessed. It was evident that such microbial transformations widely occurring in the soil are effective detoxification reactions and are beneficial for the plants.
Resumo:
Pineapple mealybug wilt-associated virus 1 (PMWaV-1), 2 (PMWaV-2) and -3 (PMWaV-3) have been detected in Australian commercial pineapple crops, along with a previously undescribed ampelovirus, for which the name Pineapple mealybug wilt-associated virus 5 (PMWaV-5) is proposed. Partial sequences extending from open reading frame 1b through to the heat shock protein homologue were obtained for PMWaV-1, -3 and -5. Phylogenetic analyses of selected regions of these sequences indicated that PMWaV-5 is a distinct species and most closely related to PMWaV-1. The amino acid sequence variation observed in the RNA-dependent RNA polymerase region of PMWaV-1 isolates was 95.8–98.4% and of PMWaV-3 isolates was 92.2–99.5%. In surveys of mealybug wilt disease (MWD) affected crops, none of the four viruses was clearly associated with the disease at all survey sites. A statistically significant association (P < 0.001) between the presence of PMWaV-2 and symptoms was observed at one survey site (site 3), but the virus was at a low incidence at the remaining three survey sites. By contrast, although PMWaV-1 and -3 were equally distributed between symptomless and MWD-affected plants at site 3, there was a statistically significant (P < 0.001) association between each of these two viruses and MWD at sites 1 and 4. At site 2, there was a statistically significant (P < 0.001) association only between PMWaV-3 and MWD. PMWaV-1 was the most commonly found of the four viruses and conversely PMWaV-5 was only occasionally found. Australian isolates of PMWaV-1, -2 and -3 were transmitted by the mealybug species Dysmicoccus brevipes.
Resumo:
Abstract Microbial transformation of N, N-dimethyl-p-phenylene diamine (DMPDA), a microbial product formed from the fungicide fenaminosulf (p-dimethylaminobenzenediazo sodium sulfonate) was studied by enriching microbes in soils treated with the amine. Microorganisms isolated from DMPDA-treated soil belonged to the genera of Micrococcus, Alcaligenes, and Corynebacterium. Of the various isolates, Alcaligenes DM4 showed maximal growth on DMPDA utilizing it as sources of carbon and nitrogen. When grown in mineral salts basal medium containing 0.05% DMPDA to serve as carbon and nitrogen sources, Alcaligenes DM4 grew exponentially up to 18 h. Even though the characterization of the complete pathway of microbial degradation of DMPDA could not be carried out due to the auto-oxidation of the compound, the initial transformation product of DMPDA by Alcaligenes DM4 has been identified as a dimer. The dimer is generated into the culture medium presumably by the extra-cellular oxidase of Alcaligenes DM4. It is suggested that the risk-benefit evaluation on the use of fenaminosulf is to be made taking into consideration the microbial transformations of the fungicide.
Resumo:
Background: Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut. Results: A microsatellite- enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters. Conclusion. Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be very useful for germplasm analysis, linkage mapping, diversity studies and phylogenetic relationships in cultivated groundnut as well as related Arachis species.
Resumo:
Fusarium wilt of cotton, caused by the fungus Fusarium oxysporum Schlechtend. f. sp. vasinfectum (Atk.) Snyd. & Hans, was first identified in 1892 in cotton growing in sandy acid soils in Alabama (8). Although the disease was soon discovered in other major cotton-producing areas, it did not become global until the end of the next century. After its original discovery, Fusarium wilt of cotton was reported in Egypt (1902) (30), India (1908) (60), Tanzania (1954) (110), California (1959) (33), Sudan (1960) (44), Israel (1970) (27), Brazil (1978) (5), China (1981) (17), and Australia (1993) (56). In addition to a worldwide distribution, Fusarium wilt occurs in all four of the domesticated cottons, Gossypium arboretum L., G. barbadense L., G. herbaceum L., and G. hirsutum L. (4,30). Disease losses in cotton are highly variable within a country or region. In severely infested fields planted with susceptible cultivars, yield losses can be high. In California, complete crop losses in individual fields have been observed (R. M. Davis, unpublished). Disease loss estimates prepared by the National Cotton Disease Council indicate losses of over 109,000 bales (227 kg or 500 lb) in the United States in 2004 (12).
Resumo:
Sunflower rust caused by Puccinia helianthi is the most important disease of sunflower in Australia with the potential to cause significant yield losses in susceptible hybrids. Rapid and frequent virulence changes in the rust fungus population limit the effective lifespan of commercial cultivars and impose constant pressure on breeding programs to identify and deploy new sources of resistance. This paper contains a synopsis of virulence data accumulated over 25 years, and more recent studies of genotypic diversity and sexual recombination. We have used this synopsis, generated from both published and unpublished data, to propose the origin, evolution and distribution of new pathotypes of P. helianthi. Virulence surveys revealed that diverse pathotypes of P. helianthi evolve in wild sunflower populations, most likely because sexual recombination and subsequent selection of recombinant pathotypes occurs there. Wild sunflower populations provide a continuum of genetically heterogeneous hosts on which P. helianthi can potentially complete its sexual cycle under suitable environmental conditions. Population genetics analysis of a worldwide collection of P. helianthi indicated that Australian isolates of the pathogen are more diverse than non-Australian isolates. Additionally, the presence of the same pathotype in different genotypic backgrounds supported evidence from virulence data that sexual recombination has occurred in the Australian population of P. helianthi at some time. A primary aim of the work described was to apply our knowledge of pathotype evolution to improve resistance in sunflower to sunflower rust. Molecular markers were identified for a number of previously uncharacterised sunflower rust R-genes. These markers have been used to detect resistance genes in breeding lines and wild sunflower germplasm. A number of virulence loci that do not recombine were identified in P. helianthi. The resistance gene combinations corresponding to these virulence loci are currently being introgressed with breeding lines to generate hybrids with durable resistance to sunflower rust.
Resumo:
Taro (Colocasia esculenta) accessions were collected from 15 provinces of Papua New Guinea (PNG). The collection, totalling 859 accessions was collated for characterization and a core collection of 81 accessions (10%) was established on the basis of characterization data generated on 30 agro-morphological descriptors, and DNA fingerprinting using seven SSR primers. The selection of accessions was based on cluster analysis of the morphological data enabling initial selection of 20% accessions. The 20% sample was then reduced and rationalized to 10% based on molecular data generated by SSR primers. This represents the first national core collection of any species established in PNG based on molecular markers. The core has been integrated with core from other Pacific Island countries, contributing to a Pacific regional core collection, which is conserved in vitro in the South Pacific Regional Germplasm Centre at Fiji. The core collection is a valuable resource for food security of the South Pacific region and is currently being utilized by the breeding programmes of small Pacific Island countries to broaden the genetic base of the crop.
Resumo:
Keeping in view the prospects of biodegradable polymers, a polymer was synthesized by the condensation of carboxy-terminated polybutadiene (CTPB) of Mnsim-5000 with glycerol and tested for its microbial susceptibility. The results of end group estimations and viscosity measurements indicated a quantitative reaction between the two reactants under experimental conditions. The clear-zone method was employed in this investigation to test biodegradability. Two strains of Serratia and three strains of Staphylococcus did show a clear zone surrounding the colony. However, the microbial growth was found to diminish after 4 or 5 days.
Resumo:
Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3-7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.
Resumo:
The sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to justify the routine use of marker-assisted breeding for many traits and particularly quantitative traits. Diversity Arrays Technology (DArT™) is a cost effective hybridisation-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers sorghum breeding programs an alternative approach to whole-genome profiling. We report on the development, application, mapping and utility of DArT™ markers for sorghum germplasm. Results: A genotyping array was developed representing approximately 12,000 genomic clones using PstI+BanII complexity with a subset of clones obtained through the suppression subtractive hybridisation (SSH) method. The genotyping array was used to analyse a diverse set of sorghum genotypes and screening a Recombinant Inbred Lines (RIL) mapping population. Over 500 markers detected variation among 90 accessions used in a diversity analysis. Cluster analysis discriminated well between all 90 genotypes. To confirm that the sorghum DArT markers behave in a Mendelian manner, we constructed a genetic linkage map for a cross between R931945-2-2 and IS 8525 integrating DArT and other marker types. In total, 596 markers could be placed on the integrated linkage map, which spanned 1431.6 cM. The genetic linkage map had an average marker density of 1/2.39 cM, with an average DArT marker density of 1/3.9 cM. Conclusion: We have successfully developed DArT markers for Sorghum bicolor and have demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps. The high number of DArT markers generated in a single assay not only provides a precise estimate of genetic relationships among genotypes, but also their even distribution over the genome offers real advantages for a range of molecular breeding and genomics applications.
Resumo:
The most common explanation for species diversity increasing towards the tropics is the corresponding increase in habitats (spatial heterogeneity). Consequently, a monoculture (like cotton in Australia) which is grown along a latitudinal gradient, should have the same degree of species diversity throughout its range. We tested to see if diversity in a dominant cotton community (spiders) changed with latitude, and if the community was structurally identical in different parts of Australia. We sampled seven sites extending over 20 degrees of latitude. At each site we sampled 1-3 fields 3-5 times during the cotton growing season using pitfall traps and beatsheets, recording all the spiders collected to family. We found that spider communities in cotton are diverse, including a large range of foraging guilds, making them suitable for a conservation biological control programme. We also found that spider diversity increased from high to low latitudes, and the communities were different, even though the spiders were in the same monocultural habitat. Spider beatsheet communities around Australia were dominated by different families, and responded differently to seasonal changes, indicating that different pest groups would be targeted at different locations. These results show that diversity can increase from high to low latitudes, even if spatial heterogeneity is held constant, and that other factors external to the cotton crop are influencing spider species composition. Other models which may account for the latitudinal gradient, such as non-equilibrium regional processes, are discussed.
Resumo:
Background: Sorghum genome mapping based on DNA markers began in the early 1990s and numerous genetic linkage maps of sorghum have been published in the last decade, based initially on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated through other marker technologies. Here, we report on the colinearity of six independent sorghum component maps and on the integration of these component maps into a single reference resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers. Results: The six component maps were constructed using the MultiPoint software. The lengths of the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated in more than one population was highly consistent between the six individual mapping data sets. The framework consensus map was constructed using a "Neighbours" approach and contained 251 integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average density of one marker every 5.4 cM, and were used for the projection of the remaining markers. In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique loci ( 1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers. Non-random patterns of DNA marker distribution were observed, with some clear marker-dense regions and some marker-rare regions. Conclusion: The final consensus map has allowed us to map a larger number of markers than possible in any individual map, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across individual component maps, good agreement in overall distances between common marker pairs across the component maps used in this study was determined, using a difference ratio calculation. The obtained consensus map can be used as a reference resource for genetic studies in different genetic backgrounds, in addition to providing a framework for transferring genetic information between different marker technologies and for integrating DArT markers with other genomic resources. DArT markers represent an affordable, high throughput marker system with great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays are not publicly available.
Resumo:
Aim: Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguis-cati and Jatropha gossypiifolia using molecular data. Location: Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods: We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results: Strong genetic structure was found within the native range of M. unguis-cati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguis-cati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions: These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non-native ranges. Invasive populations of M. unguis-cati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguis-cati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio-control agents will be considerably more complex.
Resumo:
This paper critiques a traditional approach to music theory pedagogy. It argues that music theory courses should draw on pedagogies that reflect the diversity and pluralism inherent in 21st century music making. It presents the findings of an action research project investigating the experiences of undergraduate students undertaking an innovative contemporary art music theory course. It describes the students’ struggle in coming to terms with a course that integrated composing, performing, listening and analysing coupled with what for many was their first exposure to the diversity of contemporary art music. The paper concludes with suggesting that the approach could be adopted more widely throughout music programs.