918 resultados para melt extrusion
Resumo:
Poly(ethylene terephthalate) (PET) nanocomposites with single-walled carbon nanotubes (SWNTs) have been prepared by a simple melt compounding method. With increasing concentration (0-3 wt %) of SWNTs, the mechanical and dynamic mechanical properties improved, corresponding to effective reinforcement. Melt rheological characterization indicated the effective entanglements provided by SWNTs in the melt state as well. Thermogravimetric analysis suggested no influence of SWNTs on the thermal stability of PET. Electrical conductivity measurements on the composite films pointed out that the melt compounded SWNTs can result in electrical percolation albeit at concentrations exceeding 2 wt %.
Resumo:
Filled compounds of natural rubber, isobutylene-isoprene rubber and styrene-butadiene rubber compounds were extruded through a laboratory extruder by varying the feeding rate at different temperatures and revolutions per minute. The extruded compounds were vulcanized up to their optimum cure times and the mechanical properties of the vulcanizates were determined. The properties suggest that there is a particular feeding rate in the starved fed region which results in maximum mechanical properties. The study shows that running the extruder at a slightly starved condition is an attractive means of improving the physical properties.
Resumo:
Filled and gum compounds of Isobutylene-Isoprene rubber were extruded through a laboratory extruder at various feeding rates, different temperatures and revolutions per minute. The extruded compounds were vulcanized up to their optimum cure times and the mechanical properties of the vulcanizates were determined. The properties suggest that there is a particular feeding rate in the starved fed region, which results in maximum mechanical properties. The study shows that running the extruder at a slightly starved condition is an attractive means of improving the physical properties.
Resumo:
Short fiber reinforced thermoplastics have generated much interest these days since fibrous materials tend to increase both mechanical and thermal properties, such as tensile strength, flexural strength, flexural modulus, heat deflection temperature, creep resistance, and some times impact strength of thermoplastics. If the matrix and reinforcement are both based on polymers the composite are recyclable. The rheological behavior of recyclable composites based on nylon fiber reinforced polypropylene (PP) is reported in this paper. The rheological behavior was evaluated both using a capillary rheometer and a torque rheometer. The study showed that the composite became pseudoplastic with fiber content and hence fiber addition did not affect processing adversely at higher shear rates. The torque rheometer data resembled that obtained from the capillary rheometer. The energy of mixing and activation energy of mixing also did not show much variation from that of PP alone.
Resumo:
In this introduction part, importance has been given to the elastomeric properties of polyurethanes. Emphasis has been laid to this property based on microphase separation and how this could be modified by modifying the segment lengths, as well as the structure of the segments. Implication was also made on the mechanical and thermal properties of these copolymers based on various analytical methods usually used for characterization of polymers. A brief overview of the challenges faced by the polyurethane chemistry was also done, pointing to the fact that though polyurethane industry is more than 75 years old, still a lot of questions remain unanswered, that too mostly in the synthesis of polyurethanes. A major challenge in this industry is the utilization of more environmental friendly “Green Chemistry Routes” for the synthesis of polyurethanes which are devoid of any isocyanates or harsh solvents.The research work in this thesis was focused to develop non-isocyanate green chemical process for polyurethanes and also self-organize the resultant novel polymers into nano-materials. The thesis was focused on the following three major aspects:(i) Design and development of novel melt transurethane process for polyurethanes under non-isocyanate and solvent free melt condition. (ii) Solvent induced self-organization of the novel cycloaliphatic polyurethanes prepared by the melt transurethane process into microporous templates and nano-sized polymeric hexagons and spheres. (iii) Novel polyurethane-oligophenylenevinylene random block copolymer nano-materials and their photoluminescence properties. The second chapter of the thesis gives an elaborate discussion on the “Novel Melt Transurethane Process ” for the synthesis of polyurethanes under non-isocyanate and solvent free melt condition. The polycondensation reaction was carried out between equimolar amounts of a di-urethane monomer and a diol in the presence of a catalyst under melt condition to produce polyurethanes followed by the removal of low boiling alcohol from equilibrium. The polymers synthesized through this green chemical route were found to be soluble (devoid of any cross links), thermally stable and free from any isocyanate entities. The polymerization reaction was confirmed by various analytical techniques with specific references to the extent of reaction which is the main watchful point for any successful polymerization reaction. The mechanistic aspects of the reaction were another point of consideration for the novel polymerization route which was successfully dealt with by performing various model reactions. Since this route was successful enough in synthesizing polyurethanes with novel structures, they were employed for the solvent induced self-organization which is an important area of research in the polymer world in the present scenario. Chapter three mesmerizes the reader with multitudes of morphologies depending upon the chemical backbone structure of the polyurethane as well as on the nature and amount of various solvents employed for the self-organization tactics. The rationale towards these morphologies-“Hydrogen Bonding ” have been systematically probed by various techniques. These polyurethanes were then tagged with luminescent 0ligo(phenylene vinylene) units and the effects of these OPV blocks on the morphology of the polyurethanes were analyzed in chapter four. These blocks have resulted in the formation of novel “Blue Luminescent Balls” which could find various applications in optoelectronic devices as well as delivery vehicles.
Resumo:
Starve feeding of single screw extruder was described as an important means of improving the performance characteristics of the extruder. In addition to such improvement with versatility, the starve feeding technique also may affect the mechanical properties of the extrudate since the heat transfer an(l mixing characteristics in the starve fed and Hood fed extruders are not the same. Since the material is more loosely packed in the channels of the starve fed extruder, there may be greater bed mobility and uniformity. Further, the. thermal an(l shear induced degradation are also less since possibilities of developing local high temperatures are less compared to a densely compacted extruder bed. This study has been undertaken mainly to explore the effect of feeding rate on the mechanical properties of rubber and plastic extrudates since the effect of feeding rate has not been analysed from this angle so far.
Resumo:
New experiments underpin the interpretation of the basic division in crystallization behaviour of polyethylene in terms of whether or not there is time for the fold surface to order before the next molecular layer is added at the growth front. For typical growth rates, in Regime 11, polyethylene lamellae form with disordered {001} fold surfaces then transform, with lamellar thickening and twisting, towards the more-ordered condition found for slower crystallization in Regime 1, in which lamellae form with and retain {201} fold surfaces. Several linear and linear-low-density polyethylenes have been used to show that, for the same polymer crystallized alone or in a blend, the growth rate at which the change in initial lamellar condition occurs is reasonably constant thereby supporting the concept of a specific time for surfaces to attain the ordered {201}) state. This specific time, in the range from milliseconds to seconds, increases with molecular length, and in linear-low-density polymer, for higher branch contents. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The excess surface energy of lamellae formed by an ABA triblock copolymer melt oriented parallel to a neutral surface is evaluated using self-consistent field theory (SCFT). Consistent with experiments and previous SCFT calculations, we find a preference for the A-rich domains at the surface, which can only be attributed to the architectural asymmetry between the A and B blocks. The behavior was previously attributed to a loss of bridging configurations that occurs when the B-domain resides at the surface. Here we demonstrate that it is actually the presence of chain ends that reduces the excess surface energy of an A-rich domain relative that of a B-rich domain.
Resumo:
The third episode of lava dome growth at Soufrière Hills Volcano began 1 August 2005 and ended 20 April 2007. Volumes of the dome and talus produced were measured using a photo-based method with a calibrated camera for increased accuracy. The total dense rock equivalent (DRE) volume of extruded andesite magma (306 ± 51 Mm3) was similar within error to that produced in the earlier episodes but the average extrusion rate was 5.6 ± 0.9 m3s−1 (DRE), higher than the previous episodes. Extrusion rates varied in a pulsatory manner from <0.5 m3s−1 to ∼20 m3s−1. On 18 May 2006, the lava dome had reached a volume of 85 Mm3 DRE and it was removed in its entirety during a massive dome collapse on 20 May 2006. Extrusion began again almost immediately and built a dome of 170 Mm3 DRE with a summit height 1047 m above sea level by 4 April 2007. There were few moderate-sized dome collapses (1–10 Mm3) during this extrusive episode in contrast to the first episode of dome growth in 1995–8 when they were numerous. The first and third episodes of dome growth showed a similar pattern of low (<0.5 m3s−1) but increasing magma flux during the early stages, with steady high flux after extrusion of ∼25 Mm3
Resumo:
Sequential crystallization of poly(L-lactide) (PLLA) followed by poly(epsilon-caprolactone) (PCL) in double crystalline PLLA-b-PCL diblock copolymers is studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). Three samples with different compositions are studied. The sample with the shortest PLLA block (32 wt.-% PLLA) crystallizes from a homogeneous melt, the other two (with 44 and 60% PLLA) from microphase separated structures. The microphase structure of the melt is changed as PLLA crystallizes at 122 degrees C (a temperature at which the PCL block is molten) forming spherulites regardless of composition, even with 32% PLLA. SAXS indicates that a lamellar structure with a different periodicity than that obtained in the melt forms (for melt segregated samples). Where PCL is the majority block, PCL crystallization at 42 degrees C following PLLA crystallization leads to rearrangement of the lamellar structure, as observed by SAXS, possibly due to local melting at the interphases between domains. POM results showed that PCL crystallizes within previously formed PLLA spherulites. WAXS data indicate that the PLLA unit cell is modified by crystallization of PCL, at least for the two majority PCL samples. The PCL minority sample did not crystallize at 42 degrees C (well below the PCL homopolymer crystallization temperature), pointing to the influence of pre-crystallization of PLLA on PCL crystallization, although it did crystallize at lower temperature. Crystallization kinetics were examined by DSC and WAXS, with good agreement in general. The crystallization rate of PLLA decreased with increase in PCL content in the copolymers. The crystallization rate of PCL decreased with increasing PLLA content. The Avrami exponents were in general depressed for both components in the block copolymers compared to the parent homopolymers. Polarized optical micrographs during isothermal crystalli zation of (a) homo-PLLA, (b) homo-PCL, (c) and (d) block copolymer after 30 min at 122 degrees C and after 15 min at 42 degrees C.
Resumo:
Using self-consistent field theory (SCFT), we investigate the morphologies formed by a melt brush of AB diblock copolymers grafted to a flat substrate by their B ends. In addition to a laterally uniform morphology, SCFT predicts three ordered morphologies exhibiting different periodic patterns at the air surface: a hexagonal array of A-rich dots, an alternating sequence of A- and B-rich stripes, and a hexagonal pattern of B-rich dots. When the phase diagram of the tethered film is plotted as a function of A/B incompatibility, $\chi N$, and diblock composition, $f$, it resembles the bulk phase diagram with the periodic phases converging to a mean-field critical point at weak segregation. The periodic-phase region in the phase diagram shrinks with increasing grafting density and expands when the air surface acquires an affinity for the grafted B blocks.
Resumo:
The phase diagram for an AB diblock copolymer melt with polydisperse A blocks and monodisperse B blocks is evaluated using lattice-based Monte Carlo simulations. Experiments on this system have shown that the A-block polydispersity shifts the order-order transitions (OOTs) towards higher A-monomer content, while the order-disorder transition (ODT) moves towards higher temperatures when the A blocks form the minority domains and lower temperatures when the A blocks form the matrix. Although self-consistent field theory (SCFT) correctly accounts for the change in the OOTs, it incorrectly predicts the ODT to shift towards higher temperatures at all diblock copolymer compositions. In contrast, our simulations predict the correct shifts for both the OOTs and the ODT. This implies that polydispersity amplifies the fluctuation-induced correction to the mean-field ODT, which we attribute to a reduction in packing frustration. Consistent with this explanation, polydispersity is found to enhance the stability of the perforated-lamellar phase.