928 resultados para master gene model
Resumo:
Gastric cancer is the fourth most frequent type of cancer and the second cause of cancer mortality worldwide. The genetic alterations described so far for gastric carcinomas include amplifications and mutations of the c-ERBB2, KRAS, MET, TP53, and c-MYC genes. Chromosomal instability described for gastric cancer includes gains and losses of whole chromosomes or parts of them and these events might lead to oncogene overexpression, showing the need for a better understanding of the cytogenetic aspects of this neoplasia. Very few gastric carcinoma cell lines have been isolated. The establishment and characterization of the biological properties of gastric cancer cell lines is a powerful tool to gather information about the evolution of this malignancy, and also to test new therapeutic approaches. The present study characterized cytogenetically PG100, the first commercially available gastric cancer cell line derived from a Brazilian patient who had a gastric adenocarcinoma, using GTG banding and fluorescent in situ hybridization to determine MYC amplification. Twenty metaphases were karyotyped; 19 (95%) of them presented chromosome 8 trisomy, where the MYC gene is located, and 17 (85%) presented a deletion in the 17p region, where the TP53 is located. These are common findings for gastric carcinomas, validating PG100 as an experimental model for this neoplasia. Eighty-six percent of 200 cells analyzed by fluorescent in situ hybridization presented MYC overexpression. Less frequent findings, such as 5p deletions and trisomy 16, open new perspectives for the study of this tumor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alveolar bone loss associated with periodontal diseases is the result of osteoclastogenesis induced by bacterial pathogens. The mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is a critical negative regulator of immune response as a key phosphatase capable of dephosphorylating activated MAPKs. In this study, rat macrophages transduced with recombinant adenovirus (Ad.)MKP-1 specifically dephosphorylated activated MAPKs induced by lipopolysaccharide (LPS) compared with control cells. Bone marrow macrophages from MKP-1 knockout (KO) mice exhibited higher interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and select chemokine compared with wild-type (WT) mice when stimulated by LPS. In addition, bone marrow cultures from MKP-1 KO mice exhibited significantly more osteoclastogenesis induced by LPS than when compared with WT mice. Importantly, MKP-1 gene transfer in bone marrow cells of MKP-1 KO mice significantly decreased IL-6, IL-10, TNF-α and chemokine levels, and formed fewer osteoclasts induced by LPS than compared with control group of cells. Furthermore, MKP-1 gene transfer in an experimental periodontal disease model attenuated bone resorption induced by LPS. Histological analysis confirmed that periodontal tissues transduced with Ad. MKP-1 exhibited less infiltrated inflammatory cells, less osteoclasts and less IL-6 than compared with rats of control groups. These studies indicate that MKP-1 is a key therapeutic target to control of inflammation-induced bone loss.
Resumo:
Curcumin has therapeutic potential in preventing several types of cancer, including colon, liver, prostate, and breast. The goal of this study was to evaluate the chemopreventive activity of systemically administered curcumin on oral carcinogenesis induced by 4-nitroquinolone-1-oxide (4-NQO). A total of 50 male albino rats, Rattus norvegicus, (Holtzman), were divided into five groups (n=10 per group). Four of these groups were exposed to 50 ppm 4-NQO in their drinking water ad libitum for 8 or 12 weeks, two groups were treated with curcumin by oral gavage at 30 or 100 mg/kg per day, and one group was treated with corn oil (vehicle) only. The negative control group was euthanized at baseline. Tongues of all animals were removed after euthanasia and used in the subsequent analysis because the tongue is the primary site of carcinogenesis in this model. Descriptive histological analysis and immunohistochemistry for PCNA, Bcl-2, SOCS1 e-3, and STAT3 were performed to assess the oncogenic process. The gene expression of Vimentin, E-cadherin, N-cadherin, or TWIST1 was assessed using RT-qPCR as a representative of epithelial-mesenchymal transition (EMT) events. The administration of curcumin at 100 mg/kg during the 12 weeks markedly decreased the expression of PCNA, Bcl-2, SOCS1 e -3, and STAT3. Curcumin also minimized the cellular atypia under microscopic analysis and diminished the expression of the genes associated with EMT. These findings demonstrate that the systemic administration of curcumin has chemopreventive activity during oral carcinogenesis induced by 4-NQO.
Resumo:
This study aimed to evaluate the potential of bacterial cellulose-hydroxyapatite (BC-HA) composites associated with osteogenic growth peptide (OGP) or pentapeptide OGP(10–14) in bone regeneration in critical-size calvarial defects in mice. In this study, the BC-HA, BC-HA-OGP, and BC-HA-OGP(10–14) membranes were analyzed at 3, 7, 15, 30, 60, and 90 days. In each period, the specimens were evaluated by micro-computed tomography (µCT), descriptive histology, gene expression of bone biomarkers by qPCR and VEGFR-2 (vascular endothelial growth factor) quantification by ELISA. Three days post-operative, Runx2, Tnfrsf11b and Bglap bone biomarkers were upregulated mainly by BC-HA OGP and BC-HA OGP(10–14) membranes, suggesting an acceleration of the osteoblast differentiation/activity with the use of these biomaterials. At 60 and 90 days, a high percentage of bone formation was observed by µCT for BC-HA and BC-HA OGP(10–14) membranes. High expression of some bone biomarkers, such as Alpl, Spp1, and Tnfrsf11b, was also observed for the same membranes on days 60 and 90. In conclusion, the BC-HA membrane promoted a better bone formation in critical-size mice calvarial defects. Nevertheless, incorporation of the peptides at the concentration of 10−9 mol L−1 did not improve bone regeneration potential in the long-term.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Curcumin has therapeutic potential in preventing several types of cancer, including colon, liver, prostate, and breast. The goal of this study was to evaluate the chemopreventive activity of systemically administered curcumin on oral carcinogenesis induced by 4-nitroquinolone-1-oxide (4-NQO). A total of 50 male albino rats, Rattus norvegicus, (Holtzman), were divided into five groups (n = 10 per group). Four of these groups were exposed to 50 ppm 4-NQO in their drinking water ad libitum for 8 or 12 weeks, two groups were treated with curcumin by oral gavage at 30 or 100 mg/kg per day, and one group was treated with corn oil (vehicle) only. The negative control group was euthanized at baseline. Tongues of all animals were removed after euthanasia and used in the subsequent analysis because the tongue is the primary site of carcinogenesis in this model. Descriptive histological analysis and immunohistochemistry for PCNA, Bcl-2, SOCS1 e-3, and STAT3 were performed to assess the oncogenic process. The gene expression of Vimentin, E-cadherin, N-cadherin, or TWIST1 was assessed using RT-qPCR as a representative of epithelial-mesenchymal transition (EMT) events. The administration of curcumin at 100 mg/kg during the 12 weeks markedly decreased the expression of PCNA, Bcl-2, SOCS1 e-3, and STAT3. Curcumin also minimized the cellular atypia under microscopic analysis and diminished the expression of the genes associated with EMT. These findings demonstrate that the systemic administration of curcumin has chemopreventive activity during oral carcinogenesis induced by 4-NQO. J. Cell. Biochem. 116: 787-796, 2015. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study investigates the genetic association of the SNP present in the ACTA1 gene with performance traits, organs and carcass of broilers to help marker-assisted selection of a paternal broiler line (TT) from EMBRAPA Swine and Poultry, Brazil. Genetic and phenotypic data of 1,400 broilers for 68 traits related to body performance, organ weights, weight of carcass parts, and yields as a percentage of organs and carcass parts were used. The maximum likelihood method, considering 4 analytical models, was used to analyze the genetic association between the SNP and these important economic traits. The association analysis was performed using a mixed animal model including the random effect of the animal (polygenic), and the fixed effects of sex (2 levels), hatch (5 levels) and SNP (3 levels), besides the random error. The traits significantly associated (P < 0.05) with the SNP were analyzed, along with body weight at 42 days of age (BW42), by the restricted maximum likelihood method using the multi-trait animal model to estimate genetic parameters. The analysis included the residual and additive genetic random effects and the sex-hatch fixed effect. The additive effects of the SNP were associated with breast meat (BMY), liver yield (LIVY), body weight at 35 days of age (BW35); drumstick skin (DSW), drumstick (DW) and breast (BW) weights. The heritability estimates for these traits, in addition to BW42, ranged from 0.24 ± 0.06 to 0.45 ± 0.08 for LIVY and BW35, respectively. The genetic correlation ranged from 0.02 ± 0.18 for LIVY and BMY to 0.97 ± 0.01 for BW35 and BW42. Based on the results of this study, it can be concluded that ACTA1 gene is associated with performance traits BW35, LIV and BMY, DW, BW and DW adjusted for body weight at 42 days of age. Therefore, the ACTA1 gene is an important molecular marker that could be used together with others already described to increase the economically important traits in broilers.