911 resultados para luminescent membranes
Resumo:
The synthesis and photophysical evaluation of two enatiomerially pure dimetallic lanthanide luminescent triple-stranded helicates is described. The two systems, formed from the chiral (R,R) ligand 1 and (S,S) ligand 2, were produced as single species in solution, where the excitation of either the naphthalene antennae or the pyridiyl units gave rise to Eu(III) emission in a variety of solvents. Excitation of the antennae also gave rise to circularly polarized Eu(III) luminescence emissions for Eu2:13 and Eu2:23 that were of equal intensity and opposite sign, confirming their enantiomeric nature in solution providing a basis upon which we were able to assign the absolute configurations of Eu2:13 and Eu2:23.
Resumo:
The synthesis of the C2-symmetrical ligand 1 consisting of two naphthalene units connected to two pyridine-2,6-dicarboxamide moieties linked by a xylene spacer and the formation of LnIII-based (Ln1/4 Sm, Eu, Tb, and Lu) dimetallic helicates [Ln2 · 13] in MeCN by means of a metal-directed synthesis is described. By analyzing the metal-induced changes in the absorption and the fluorescence of 1, the formation of the helicates, and the presence of a second species [Ln2 · 12] was confirmed by nonlinear- regression analysis. While significant changes were observed in the photophysical properties of 1, the most dramatic changes were observed in the metal-centred lanthanide emissions, upon excitation of the naphthalene antennae. From the changes in the lanthanide emission, we were able to demonstrate that these helicates were formed in high yields (ca. 90% after the addition of 0.6 equiv. of LnIII), with high binding constants, which matched well with that determined from the changes in the absorption spectra. The formation of the LuIII helicate, [ Lu2 · 13 ] , was also investigated for comparison purposes, as we were unable to obtain accurate binding constants from the changes in the fluorescence emission upon formation of [Sm2 · 13], [Eu2 · 13], and [Tb2 · 13].
Resumo:
Ionogels are solid oxide host networks con. ning at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving lanthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [C(6)mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C(6)mim][Ln(tta)(4)], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choline](3)[Tb(dpa)(3)], where dpa = pyridine-2,6-dicarboxylate (dipicolinate), were chosen as the lanthanide complexes. The ionogels are luminescent, ion-conductive inorganic-organic hybrid materials. Depending on the lanthanide(III) ion, emission in the visible or the near-infrared regions of the electromagnetic spectrum was observed. The work presented herein highlights that the confinement did not disturb the first coordination sphere of the lanthanide ions and also showed the excellent luminescence performance of the lanthanide tetrakis beta-diketonate complexes. The crystal structures of the complexes [C(6)mim][Yb(tta)(4)] and [choline](3)[Tb(dpa)(3)] are reported.
Resumo:
Hi-fi mapping: Multiplexing fluorescent sensors that simultaneously target proton concentration and polarity move to micellar nanospaces, self-regulate their positions, and report their pKa values and wavelengths, which are controlled by their local environments. Such sensory functions enable maps of proton gradients near micellar membranes to be drawn.
Resumo:
The synthesis and photophysical evaluation of a new supramolecular lanthanide complex is described which was developed as a luminescent contrast agent for bone structure analysis. We show that the Eu(III) emission of this complex is not pH dependent within the physiological pH range, and that its steady state emission is not significantly modulated by a series of group I and II as well as d-metal ions, and that this agent can be successfully employed to image mechanically formed cracks (scratches) in bone samples after 4 or 24 hours, using confocal laser-scanning microscopy.
Resumo:
Flexible luminescent polymer films were obtained by doping europium(III) complexes in blends of poly(methyl methacrylate) (PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. Different europium(III) complexes have been incorporated in the polymer/ionic liquid matrix: [C(6)mim][Eu(nta)(4)], [C(6)mim][Eu(tta)(4)], [Eu(tta)(3)(phen)] and [choline](3)[Eu(dpa)(3)], where nta is 2-naphthoyltrifluoroacetonate, tta is 2-thenoyltrifluoroacetonate, phen is 1,10-phenanthroline, dpa is 2,6-pyridinedicarboxylate ( dipicolinate) and choline is the 2-hydroxyethyltrimethyl ammonium cation. Bright red photoluminescence was observed for all the films upon irradiation with ultraviolet radiation. The luminescent films have been investigated by high-resolution steady-state luminescence spectroscopy and by time-resolved measurements. The polymer films doped with beta-diketonate complexes are characterized by a very intense D-5(0) -> F-7(2) transition ( up to 15 times more intense than the D-5(0) -> F-7(1)) transition, whereas a marked feature of the PMMA films doped with [choline](3)[Eu(dpa)(3)] is the long lifetime of the D-5(0) excited state (1.8 ms).
Resumo:
The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.
Resumo:
Luminescent ionogels were prepared by doping an europium( III) tetrakis beta-diketonate complex into an imidazolium ionic liquid, followed by immobilization of the ionic liquid by confinement in a silica network. The ionogels were obtained by a non-hydrolytic method as perfect monoliths featuring both the transparency of silica and the ionic conductivity performances of ionic liquids. The ionogels contain 80 vol % of ionic liquid. The organic-inorganic hybrid materials showed a very intense red photoluminescence under ultraviolet irradiation. The red emission has a very high coloric purity.
Resumo:
Near-infrared emitting complexes of Nd(III), Er(III), and Yb(III) based on hexacoordinate lanthanide ions with an aryl functionalized imidodiphosphinate ligand, tpip, have been synthesized and fully characterized. Three tpip ligands form a shell around the lanthanide with the ligand coordinating via the two oxygens leading to neutral complexes, Ln(tpip)(3). In the X-ray crystal structures of Er(III) and Nd(III) complexes there is evidence of CH-pi interactions between the phenyl groups. Photophysical investigations of solution samples of the complexes demonstrate that all complexes exhibit relatively long luminescence lifetimes in nondeuteurated solvents. Luminescence studies of powder samples have also been recorded for examination of the properties of NIR complexes in the solid state for potential material applications. The results underline the effective shielding of the lanthanide by the twelve phenyl groups of the tpip ligands and the reduction of high-energy vibrations in close proximity to the lanthanide, both features important in the design of NIR emitting lanthanide complexes.
Photostability of a highly luminescent europium beta-diketonate complex in imidazolium ionic liquids
Resumo:
A high quantum yield and an enhanced photostability was found for a europium(III) tetrakis(2-thenoyltrifluoroacetonate) complex after dissolving the complex in a weakly-coordinating imidazolium ionic liquid.