975 resultados para low oxygen


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in intermediate and deep ocean circulation likely played a significant role in global carbon cycling and meridional heat/moisture transport during the middle Miocene climate transition (~14 Ma). High-resolution middle Miocene (16-13 Ma) benthic foraminifer stable isotope records from the South China Sea reveal a reorganization of regional bottom waters, which preceded the globally recognized middle Miocene ~1 per mil d18O increase (13.8 Ma) by 100,000 years. An observed reversal of the benthic foraminifera d13C gradient between ODP Sites 1146 (2092 m) and 1148 (3294 m; 13.9-13.5 Ma) is interpreted to reflect an increase in the southward flux of low d13C deep (> 2000 m) Pacific Ocean waters (Flower and Kennett, 1993, doi:10.1029/93PA02196; Shevenell and Kennett, 2004). Large-scale changes in Pacific intermediate and deep ocean circulation, coupled with enhanced global carbon cycling at the end of the Monterey Carbon Isotope excursion, likely acted as internal feedbacks to the Earth's climate system. These feedbacks reduced the sensitivity of Antarctica to lower latitude-derived heat/moisture and facilitated the transition of the Earth's climate system to a new, relatively stable glacial state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Core Vema 28-238 preserves an excellent oxygen isotope and magnetic stratigraphy and is shown to contain undisturbed sediments deposited continuously through the past 870,000 yr. Detailed correlation with sequences described by Emiliani in the Caribbean and Atlantic Ocean is demonstrated. The boundaries of 22 stages representing alternating times of high and low Northern Hemisphere ice volume are recognized and dated. The record is interpreted in terms of Northern Hemisphere ice accumulation, and is used to estimate the range of temperature variation in the Caribbean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of their relative concentration towards the respective Atlantic margins, the silicic eruptives of the Parana (Brazil)-Etendeka large igneous province are disproportionately abundant in the Etendeka of Namibia. The NW Etendeka silicic units, dated at similar to132 Ma, occupy the upper stratigraphic levels of the volcanic sequences, restricted to the coastal zone, and comprise three latites and five quartz latites (QL). The large-volume Fria QL is the only low-Ti type. Its trace element and isotopic signatures indicate massive crustal input. The remaining NW Etendeka silicic units are enigmatic high-Ti types, geochemically different from low-Ti types. They exhibit chemical affinities with the temporally overlapping Khumib high-Ti basalt (see Ewart et al. Part 1) and high crystallization temperatures (greater than or equal to980 to 1120degreesC) inferred from augite and pigeonite phenocrysts, both consistent with their evolution from a mafic source. Geochemically, the high-Ti units define three groups, thought genetically related. We test whether these represent independent liquid lines of descent from a common high-Ti mafic parent. Although the recognition of latites reduces the apparent silica gap, difficulty is encountered in fractional crystallization models by the large volumes of two QL units. Numerical modelling does, however, support large-scale open-system fractional crystallization, assimilation of silicic to basaltic materials, and magma mixing, but cannot entirely exclude partial melting processes within the temporally active extensional environment. The fractional crystallization and mixing signatures add to the complexity of these enigmatic and controversial silicic magmas. The existence, however, of temporally and spatially overlapping high-Ti basalts is, in our view, not coincidental and the high-Ti character of the silicic magmas ultimately reflects a mantle signature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Apoptosis and differentiation are among the consequences of changes in intracellular Ca2+ levels. In this study, we investigated the effects of the endoplasmic reticular Ca2+-ATPase inhibitor, thapsigargin (TG), on osteoclast apoptosis and differentiation. Materials and Methods: Both RAW264.7 cells and primary spleen cells were used to examine the effect of TG on RANKL-induced osteoclastogenesis. To determine the action of TG on signaling pathways, we used reporter gene assays for NF-kappa B and activator protein-1 (AP-1) activity, Western blotting for phosphoextracellular signal-related kinase (ERK), and fluorescent probes to measure changes in levels of intracellular calcium and reactive oxygen species (ROS). To assess rates of apoptosis, we measured changes in annexin staining, caspase-3 activity, and chromatin and F-actin microfilament structure. Results: At concentrations that caused a rapid rise in intracellular Ca2+, TG increased caspase-3 activity and promoted apoptosis in osteoclast-like cells (OLCs). Low concentrations of TG, which were insufficient to measurably alter intracellular Ca2+, unexpectedly suppressed caspase-3 activity and enhanced RANKL-induced osteoclastogenesis. At these lower concentrations, TG potentiated ROS production and RANKL-induced NF-kappa B activity, but suppressed RANKL-induced AP-1 activity and had little effect on ERK phosphorylation. Conclusion: Our novel findings of a biphasic effect of TG are incompletely explained by our current understanding of TG action, but raise the possibility that low intensity or local changes in subcellular Ca2+ levels may regulate intracellular differentiation signaling. The extent of cross-talk between Ca2+ and RANKL-mediated intracellular signaling pathways might be important in determining whether cells undergo apoptosis or differentiate into OLCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a pore agent, creating increased surface area and pore volume, though considerably higher in artificial lobster samples due to the better homogeneity of the components. Various characterisation techniques revealed the presence of a considerable amount of hydroxyapatite left in the real lobster samples after acid washing and a low content of carbon (23%), nitrogen and sulphur (<1%), limiting the surface area to 23 m2/g, and consequently resulting in rather poor catalytic activity. However, artificial lobster samples, with a surface area of ≈200 m2/g and a nitrogen doping of 2%, showed a promising onset potential, very similar to a commercially available platinum catalyst, with better methanol tolerance, though with lower stability in long time testing over 10,000 s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pin on disc wear machines were used to study the boundary lubricated friction and wear of AISI 52100 steel sliding partners. Boundary conditions were obtained by using speed and load combinations which resulted in friction coefficients in excess of 0.1. Lubrication was achieved using zero, 15 and 1000 ppm concentrations of an organic dimeric acid additive in a hydrocarbon base stock. Experiments were performed for sliding speeds of 0.2, 0.35 and 0.5 m/s for a range of loads up to 220 N. Wear rate, frictional force and pin temperature were continually monitored throughout tests and where possible complementary methods of measurement were used to improve accuracy. A number of analytical techniques were used to examine wear surfaces, debris and lubricants, namely: Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), optical microscopy, Back scattered Electron Detection (BSED) and several metallographic techniques. Friction forces and wear rates were found to vary linearly with load for any given combination of speed and additive concentration. The additive itself was found to act as a surface oxidation inhibitor and as a lubricity enhancer, particularly in the case of the higher (1000 ppm) concentration. Wear was found to be due to a mild oxidational mechanism at low additive concentrations and a more severe metallic mechanism at higher concentrations with evidence of metallic delamination in the latter case. Scuffing loads were found to increase with increasing additive concentration and decrease with increasing speed as would be predicted by classical models of additive behaviour as an organo-metallic soap film. Heat flow considerations tended to suggest that surface temperature was not the overriding controlling factor in oxidational wear and a model is proposed which suggests oxygen concentration in the lubricant is the controlling factor in oxide growth and wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Retinal vessel oxygenation saturation measurements have been the focus of much attention in recent years as a potential diagnostic parameter in a number of ocular and systemic pathologies. This interest has been heightened by the ability to measure oxygen saturation in vivo using a photographic technique. METHODS: Retinal vessel oxygenation in venules and arterioles of 279 retinal vessels of 12 healthy Caucasian participants (mean age: 30 SD (+/- 6) years) were measured consecutively three times to evaluate short-term variation in oxygen saturation and regional variability of retinal vessel oxygen saturation using dual-wavelength technology (Oxymetry Modul, Imedos, Germany). All subjects underwent standard optometric assessment including non-contact intra-ocular pressure assessment as well as having their systemic blood pressure measured. RESULTS: Vessels were grouped as either near-macula or peripheral, depending on their location. Peripheral arterioles and venules exhibited significantly lower oxygen saturation compared to their near-macula counterparts (arterioles: 94.7% (SD 3.9) vs. 99.7% (SD 3.2); venules: 65.1% (SD 7.2) vs. 90.3% (SD 6.7)). Both arterioles and venules, main branches, and those feeding and draining the retina near the macula and periphery showed low short-term variability of oxygen saturation (arterioles: COV 1.2-1.8%; venules: COV 2.9-4.9%). CONCLUSIONS: Retinal arterioles and venules exhibit low short-term variation of oxygen saturation in healthy subjects. Regional differences in oxygen saturation could be a potential useful marker for risk stratification and diagnostic purposes of area-specific retinal pathology such as age-related macula degeneration and diabetic maculopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection is a major clinical problem associated with the use of intravenous catheters.The efficacy of a direct electric current (10µA, 9V) via electrode-conducting carbon impregnated catheters to prevent colonisation of catheters by micro-organisms was investigated. The range of organisms susceptible to 10µA was determined by a zone of inhibition test. The catheters acting as the anode and the cathode were inserted into a nutrient agar plate inoculated with a lawn of bacteria. There was no zone of inhibition observed around the anode. Organisms susceptible to 10µA at the cathode were Staphylococcus aureus (2 strains), Staphylococcus epidermidis (5 strains), Escherichia coli and Klebsiella pneumoniae (2 strains each), and one strain of the following micro-organisms: Staphylococcus hominis, Proteus mirabilis, Pseudomonas aeruginosa and Candida albicans. The zones ranged from 6 to 16 mm in diameter according to the organisms under test. The zone size was proportional to the amperage (10 - 100 µA) and the number of organisms on the plate. Ten µA did not prevent adhesion of staphylococci to the cathode nor did it affect their growth in nutrient broth. However, it was bactericidal to adherent bacteria on the cathodal catheter and significantly reduced the number of bacteria on the catheter after 4 to 24 h application of electricity. The antimicrobial activity of low amperage electric current under anaerobic conditions and in the absence of chloride ions against bacteria attached to the surface of a current carrying electrode was also investigated.The mechanisms of the bactericidal activity associated with the cathode were investigated with S. epidermidis and S. aureus. The inhibition zone was greatly reduced in the presence of catalase. There was no zone around the cathode when the test was carried out under anaerobic conditions. Hydrogen peroxide was produced at the cathode surface under aerobic conditions, but not in the absence of oxygen. A salt-bridge apparatus was used to demonstrate further that hydrogen peroxide was produced at the cathode, and chlorine at the anode. The antimicrobial activity of low amperage electric current under anaerobic conditions and in the absence of chloride ions against bacteria attached to the surface of a current carrying electrode was also investigated. Antibacterial activity was reduced under anaerobic conditions, which is compatible with the role of hydrogen peroxide as a primary bactericidal agent of electricity associated with the cathode. A reduction in chloride ions did not significantly reduce the antibacterial activity suggesting chlorine plays only a minor role in the bactericidal activity against organisms attached to anodal electrode surfaces. The bactericidal activity of electric current associated with the cathode and H202 was greatly reduced in the presence of 50 μM to 0.5 mM magnesium ions in the test menstrum. Ten μA applied via the catheters did not prevent the initial biofilm growth by the adherent bacteria but reduced the number of bacteria in the biofilm by 2 log order aiter 24 h. The results suggested that 10 μA may prevent the colonisation of catheters by both the extra~ and intra-luminal routes. The localised production of hydrogen peroxide and chlorine and the intrinsic activity due to electric current may offer a useful method for the eradication of bacteria from catheter surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

REDOX responsive (nano)materials typically exhibit chemical changes in response to the presence and concentration of oxidants/reductants. Due to the complexity of biological environments, it is critical to ascertain whether the chemical response may depend on the chemical details of the stimulus, in addition to its REDOX potential, and whether chemically different responses can determine a different overall performance of the material. Here, we have used oxidation-sensitive materials, although these considerations can be extended also to reducible ones. In particular, we have used poly(propylene sulfide) (PPS) nanoparticles coated with a PEGylated emulsifier (Pluronic F127); inter alia, we here present also an improved preparative method. The nanoparticles were exposed to two Reactive Oxygen Species (ROS) typically encountered in inflammatory reactions, hydrogen peroxide (H2O2) and hypochlorite (ClO−); their response was evaluated with a variety of techniques, including diffusion NMR spectroscopy that allowed to separately characterize the chemically different colloidal species produced. The two oxidants triggered a different chemical response: H2O2 converted sulfides to sulfoxides, while ClO− partially oxidized them further to sulfones. The different chemistry correlated to a different material response: H2O2 increased the polarity of the nanoparticles, causing them to swell in water and to release the surface PEGylated emulsifier; the uncoated oxidized particles still exhibited very low toxicity. On the contrary, ClO− rapidly converted the nanoparticles into water-soluble, depolymerized fragments with a significantly higher toxicity. The take-home message is that it is more correct to discuss ‘smart’ materials in terms of an environmentally specific response to (REDOX) stimuli. Far from being a problem, this could open the way to more sophisticated and precisely targeted applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. To establish the optimal flash settings for retinal vessel oxygen saturation parameters using dual-wavelength imaging in a multiethnic group. METHODS. Twelve healthy young subjects (mean age 32 years [SD 7]; three Mediterranean, two South Asian, and seven Caucasian individuals) underwent retinal vessel oxygen saturation measurements using dual-wavelength oximetry, noncontact tonometry, and manual sphygmomanometry. In order to evaluate the impact of flash intensity, we obtained three images (fundus camera angle 30°, ONH centered) per flash setting. Flash settings of the fundus camera were increased in steps of 2 (initial setting of 6 and the final of 22), which reflect logarithmic increasing intensities from 13.5 to 214 Watt seconds (Ws). RESULTS. Flash settings below 27 Ws were too low to obtain saturation measurements, whereas flash settings of more than 214 Ws resulted in overexposed images. Retinal arteriolar and venular oxygen saturation was comparable at flash settings of 27 to 76 Ws (arterioles' range: 85%-92%; venules' range: 45%-53%). Higher flash settings lead to increased saturation measurements in both retinal arterioles (up to 110%) and venules (up to 92%), with a more pronounced increase in venules. CONCLUSIONS. Flash intensity has a significant impact on retinal vessel oxygen saturation measurements using dual-wavelength retinal oximetry. High flash intensities lead to supranormal oxygen saturation measurements with a magnified effect in retinal venules compared with arteries. In addition to even retinal illumination, the correct flash setting is of paramount importance for clinical acquisition of images in retinal oximetry. We recommend flash settings between 27 to 76 Ws. © 2013 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Oxygen and sulphide dynamics were examined, using microelectrode techniques, in meristems and rhizomes of the seagrass Thalassia testudinum at three different sites in Florida Bay, and in the laboratory, to evaluate the potential role of internal oxygen variability and sulphide invasion in episodes of sudden die-off. The sites differed with respect to shoot density and sediment composition, with an active die-off occurring at only one of the sites. 2 Meristematic oxygen content followed similar diel patterns at all sites with high oxygen content during the day and hyposaturation relative to the water column during the night. Minimum meristematic oxygen content was recorded around sunrise and varied among sites, with values close to zero at the die-off site. 3 Gaseous sulphide was detected within the sediment at all sites but at different concentrations among sites and within the die-off site. Spontaneous invasion of sulphide into Thalassia rhizomes was recorded at low internal oxygen partial pressure during darkness at the die-off site. 4 A laboratory experiment showed that the internal oxygen dynamics depended on light availability, and hence plant photosynthesis, and on the oxygen content of the water column controlling passive oxygen diffusion from water column to leaves and belowground tissues in the dark. 5 Sulphide invasion only occurred at low internal oxygen content, and the rate of invasion was highly dependent on the oxygen supply to roots and rhizomes. Sulphide was slowly depleted from the tissues when high oxygen partial pressures were re-established through leaf photosynthesis. Coexistence of sulphide and oxygen in the tissues and the slow rate of sulphide depletion suggest that sulphide reoxidation is not biologically mediated within the tissues of Thalassia. 6 Our results support the hypothesis that internal oxygen stress, caused by low water column oxygen content or poor plant performance governed by other environmental factors, allows invasion of sulphide and that the internal plant oxygen and sulphide dynamics potentially are key factors in the episodes of sudden die-off in beds of Thalassia testudinum . Root anoxia followed by sulphide invasion may be a more general mechanism determining the growth and survival of other rooted plants in sulphate-rich aquatic environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen atoms within fossil wood provide high-resolution records of climate change, particularly for the Quaternary. However, current analysis methods of fossil cellulose do not differentiate between different positions of the oxygen atoms. Here, we propose a refinement to tree-cellulose paleoclimatology modeling, using the cellulose-derived compound phenylglucosazone as the isotopic substrate. Stem samples from trees were collected at northern latitudes as low as 24°37′N and as high as 69°00′N. We extracted stem water and cellulose from each stem sample and analyzed them for their 18O content. In addition, we derived the cellulose to phenylglucosazone, a compound which lacks the oxygen attached to the second carbon of the cellulose–glucose moieties. Oxygen isotope analysis of phenylglucosazone allowed us to calculate the 18O content of the oxygen attached to the second carbon of the cellulose–glucose moieties. By way of these analyses, we tested two hypotheses: first, that the 18O content of the oxygen attached to second carbon will more closely reflect the 18O content of the stem water, and will not resemble the 18O content of either cellulose or its derivative phenylglucosazone. Second, tree-ring models that incorporate the variable oxygen isotope fractionation shown here and elsewhere are more accurate than those that do not. Our first hypothesis was rejected on the basis that the oxygen isotope ratios of the oxygen attached to the second carbon of the glucose moieties had a noisy isotopic signal with a large standard deviation and gave the poorest correlation with the oxygen isotope ratios of stem water. Related to this isotopic noise, we observed that the correlation between oxygen isotope ratios of phenylglucosazone with both stem water and relative humidity were higher than those observed for cellulose. Our hypothesis about tree-ring models which account for changes in the oxygen isotopic fractionation during cellulose synthesis was consistent only for the 18O content of phenylglucosazone. We showed that the tree-ring model based on the 18O content of phenylglucosazone was an improvement over existing models that are based on whole cellulose. Additionally, this approach may be used in other cellulose based archives such as peat deposits and lacustrine sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant improvements have been made in estimating gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) from diel, “free-water” changes in dissolved oxygen (DO). Here we evaluate some of the assumptions and uncertainties that are still embedded in the technique and provide guidelines on how to estimate reliable metabolic rates from high-frequency sonde data. True whole-system estimates are often not obtained because measurements reflect an unknown zone of influence which varies over space and time. A minimum logging frequency of 30 min was sufficient to capture metabolism at the daily time scale. Higher sampling frequencies capture additional pattern in the DO data, primarily related to physical mixing. Causes behind the often large daily variability are discussed and evaluated for an oligotrophic and a eutrophic lake. Despite a 3-fold higher day-to-day variability in absolute GPP rates in the eutrophic lake, both lakes required at least 3 sonde days per week for GPP estimates to be within 20% of the weekly average. A sensitivity analysis evaluated uncertainties associated with DO measurements, piston velocity (k), and the assumption that daytime R equals nighttime R. In low productivity lakes, uncertainty in DO measurements and piston velocity strongly impacts R but has no effect on GPP or NEP. Lack of accounting for higher R during the day underestimates R and GPP but has no effect on NEP. We finally provide suggestions for future research to improve the technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescent proteins are valuable tools as biochemical markers for studying cellular processes. Red fluorescent proteins (RFPs) are highly desirable for in vivo applications because they absorb and emit light in the red region of the spectrum where cellular autofluorescence is low. The naturally occurring fluorescent proteins with emission peaks in this region of the spectrum occur in dimeric or tetrameric forms. The development of mutant monomeric variants of RFPs has resulted in several novel FPs known as mFruits. Though oxygen is required for maturation of the chromophore, it is known that photobleaching of FPs is oxygen sensitive, and oxygen-free conditions result in improved photostabilities. Therefore, understanding oxygen diffusion pathways in FPs is important for both photostabilites and maturation of the chromophores. We used molecular dynamics calculations to investigate the protein barrel fluctuations in mCherry, which is one of the most useful monomeric mFruit variants, and its GFP homolog citrine. We employed implicit ligand sampling and locally enhanced sampling to determine oxygen pathways from the bulk solvent into the mCherry chromophore in the interior of the protein. The pathway contains several oxygen hosting pockets, which were identified by the amino acid residues that form the pocket. We calculated the free-energy of an oxygen molecule at points along the path. We also investigated an RFP variant known to be significantly less photostable than mCherry and find much easier oxygen access in this variant. We showed that oxygen pathways can be blocked or altered, and barrel fluctuations can be reduced by strategic amino acid substitutions. The results provide a better understanding of the mechanism of molecular oxygen access into the fully folded mCherry protein barrel and provide insight into the photobleaching process in these proteins.