946 resultados para latent growth curve modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND ; AIMS: Integrin alphavbeta6 is highly expressed on certain activated epithelia, where it mediates attachment to fibronectin and serves as coreceptor for the activation of latent transforming growth factor (TGF)-beta1. Because its role in liver fibrosis is unknown, we studied alphavbeta6 function in vitro and explored the antifibrotic potential of the specific alphavbeta6 antagonist EMD527040. METHODS: Experimental liver fibrosis was studied in rats after bile duct ligation (BDL) and in Mdr2(abcb4)(-/-) mice. Different doses of EMD527040 were given to rats from week 2 to 6 after BDL and to Mdr2(-/-) mice from week 4 to 8. Liver collagen was quantified, and expression of alphavbeta6 and fibrosis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. alphavbeta6-expressing cells, bile duct proliferation, and apoptosis were assessed histologically. The effect of EMD527040 on cholangiocyte adhesion, proliferation, apoptosis, and TGF-beta1 activation was studied in vitro. RESULTS: alphavbeta6 was highly expressed on proliferating bile duct epithelia in fibrosis, with 100-fold increased transcript levels in advanced fibrosis. EMD527040 attenuated bile ductular proliferation and peribiliary collagen deposition by 40%-50%, induced down-regulation of fibrogenic and up-regulation of fibrolytic genes, and improved liver architecture and function. In vitro alphavbeta6 inhibition reduced activated cholangiocyte proliferation, their adhesion to fibronectin, and endogenous activation of TGF-beta1 by 50% but did not affect bile duct apoptosis. CONCLUSIONS: Integrin alphavbeta6 is strongly up-regulated in proliferating bile duct epithelia and drives fibrogenesis via adhesion to fibronectin and auto/paracrine TGF-beta1 activation. Pharmacologic inhibition of alphavbeta6 potently inhibits the progression of primary and secondary biliary fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: This study developed percentile curves for anthropometric (waist circumference) and cardiovascular (lipid profile) risk factors for US children and adolescents. STUDY DESIGN: A representative sample of US children and adolescents from the National Health and Nutrition Examination Survey from 1988 to 1994 (NHANES III) and the current national series (NHANES 1999-2006) were combined. Percentile curves were constructed, nationally weighted, and smoothed using the Lambda, Mu, and Sigma method. The percentile curves included age- and sex-specific percentile values that correspond with and transition into the adult abnormal cut-off values for each of these anthropometric and cardiovascular components. To increase the sample size, a second series of percentile curves was also created from the combination of the 2 NHANES databases, along with cross-sectional data from the Bogalusa Heart Study, the Muscatine Study, the Fels Longitudinal Study and the Princeton Lipid Research Clinics Study. RESULTS: These analyses resulted in a series of growth curves for waist circumference, total cholesterol, LDL cholesterol, triglycerides, and HDL cholesterol from a combination of pediatric data sets. The cut-off for abnormal waist circumference in adult males (102 cm) was equivalent to the 94(th) percentile line in 18-year-olds, and the cut-off in adult females (88 cm) was equivalent to the 84(th) percentile line in 18-year-olds. Triglycerides were found to have a bimodal pattern among females, with an initial peak at age 11 and a second at age 20; the curve for males increased steadily with age. The HDL curve for females was relatively flat, but the male curve declined starting at age 9 years. Similar curves for total and LDL cholesterol were constructed for both males and females. When data from the additional child studies were added to the national data, there was little difference in their patterns or rates of change from year to year. CONCLUSIONS: These curves represent waist and lipid percentiles for US children and adolescents, with identification of values that transition to adult abnormalities. They could be used conditionally for both epidemiological and possibly clinical applications, although they need to be validated against longitudinal data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated choice and latent variable (ICLV) models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM) for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apical-basal axis of the early plant embryo determines the body plan of the adult organism. To establish a polarized embryonic axis, plants evolved a unique mechanism that involves directional, cell-to-cell transport of the growth regulator auxin. Auxin transport relies on PIN auxin transporters 1], whose polar subcellular localization determines the flow directionality. PIN-mediated auxin transport mediates the spatial and temporal activity of the auxin response machinery 2-7] that contributes to embryo patterning processes, including establishment of the apical (shoot) and basal (root) embryo poles 8]. However, little is known of upstream mechanisms guiding the (re)polarization of auxin fluxes during embryogenesis 9]. Here, we developed a model of plant embryogenesis that correctly generates emergent cell polarities and auxin-mediated sequential initiation of apical-basal axis of plant embryo. The model relies on two precisely localized auxin sources and a feedback between auxin and the polar, subcellular PIN transporter localization. Simulations reproduced PIN polarity and auxin distribution, as well as previously unknown polarization events during early embryogenesis. The spectrum of validated model predictions suggests that our model corresponds to a minimal mechanistic framework for initiation and orientation of the apical-basal axis to guide both embryonic and postembryonic plant development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Risk behaviors such as substance use or deviance are often limited to the early stages of the life course. Whereas the onset of risk behavior is well studied, less is currently known about the decline and timing of cessation of risk behaviors of different domains during young adulthood. Prevalence and longitudinal developmental patterning of alcohol use, drinking to the point of drunkenness, smoking, cannabis use, deviance, and HIV-related sexual risk behavior were compared in a Swiss community sample (N = 2,843). Using a longitudinal cohort-sequential approach to link multiple assessments with 3 waves of data for each individual, the studied period spanned the ages of 16 to 29 years. Although smoking had a higher prevalence, both smoking and drinking up to the point of drunkenness followed an inverted U-shaped curve. Alcohol consumption was also best described by a quadratic model, though largely stable at a high level through the late 20s. Sexual risk behavior increased slowly from age 16 to age 22 and then remained largely stable. In contrast, cannabis use and deviance linearly declined from age 16 to age 29. Young men were at higher risk for all behaviors than were young women, but apart from deviance, patterning over time was similar for both sexes. Results about the timing of increase and decline as well as differences between risk behaviors may inform tailored prevention programs during the transition from late adolescence to adulthood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study aimed at identifying distinct quitting trajectories over 29 days after an unassisted smoking ces- sation attempt by ecological momentary assessment (EMA). In order to validate these trajectories we tested if they predict smoking frequency up to six months later. Methods: EMA via mobile phones was used to collect real time data on smoking (yes/no) after an unassisted quit attempt over 29 days. Smoking frequency one, three and six months after the quit attempt was assessed with online questionnaires. Latent class growth modeling was used to analyze the data of 230 self-quitters. Results: Four different quitting trajectories emerged: quitter (43.9%), late quitter (11.3%), returner (17%) and persistent smoker (27.8%). The quitting trajectories predicted smoking frequency one, three and six months after the quit attempt (all p < 0.001). Conclusions: Outcome after a smoking cessation attempt is better described by four distinct trajectories instead of a binary variable for abstinence or relapse. In line with the relapse model by Marlatt and Gordon, late quitter may have learned how to cope with lapses during one month after the quitting attempt. This group would have been allocated to the relapse group in traditional outcome studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current nutrient deposition shows episodic variations which likely may impact the local nutrient cycle at the RBSF. Comparing analyses of deposition data during present-day atmospheric circulation and phases of high biomass burning in the Amazon, characteristic relationships between remote emissions and local deposition are determined. By using projections drawn from the special report on emission scenarios (SRES) in combination with a trajectory modeling tool, future nutrient deposition conditions of the mountain ecosystem are assessed. Observations of relations between climatic variables, current time series of nutrient deposition, and tree growth point to an impact of the remote fertilization effect of atmospheric matters, emitted primarily by human activities like biomass burning and agricultural and industrial sources. The increasing emissions in the future may have adverse effects on the ecosystem in the long run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The factorial validity of the SF-36 was evaluated using confirmatory factor analysis (CFA) methods, structural equation modeling (SEM), and multigroup structural equation modeling (MSEM). First, the measurement and structural model of the hypothesized SF-36 was explicated. Second, the model was tested for the validity of a second-order factorial structure, upon evidence of model misfit, determined the best-fitting model, and tested the validity of the best-fitting model on a second random sample from the same population. Third, the best-fitting model was tested for invariance of the factorial structure across race, age, and educational subgroups using MSEM.^ The findings support the second-order factorial structure of the SF-36 as proposed by Ware and Sherbourne (1992). However, the results suggest that: (a) Mental Health and Physical Health covary; (b) general mental health cross-loads onto Physical Health; (c) general health perception loads onto Mental Health instead of Physical Health; (d) many of the error terms are correlated; and (e) the physical function scale is not reliable across these two samples. This hierarchical factor pattern was replicated across both samples of health care workers, suggesting that the post hoc model fitting was not data specific. Subgroup analysis suggests that the physical function scale is not reliable across the "age" or "education" subgroups and that the general mental health scale path from Mental Health is not reliable across the "white/nonwhite" or "education" subgroups.^ The importance of this study is in the use of SEM and MSEM in evaluating sample data from the use of the SF-36. These methods are uniquely suited to the analysis of latent variable structures and are widely used in other fields. The use of latent variable models for self reported outcome measures has become widespread, and should now be applied to medical outcomes research. Invariance testing is superior to mean scores or summary scores when evaluating differences between groups. From a practical, as well as, psychometric perspective, it seems imperative that construct validity research related to the SF-36 establish whether this same hierarchical structure and invariance holds for other populations.^ This project is presented as three articles to be submitted for publication. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a three-dimensional physical-biogeochemical model, we have investigated the modeled responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific, and compared the model simulation with in situ (IronEx II) iron fertilization results. In the eastern equatorial Pacific, an area of 540,000 km(2) was enhanced with iron by changing the photosynthetic efficiency and silicate and nitrogen uptake kinetics of phytoplankton in the model for a period of 20 days. The vertically integrated Chl a and primary production increased by about threefold 5 days after the start of the experiment, similar to that observed in the IronEx II experiment. Diatoms contribute to the initial increase of the total phytoplankton biomass, but decrease sharply after 10 days because of mesozooplankton grazing. The modeled surface nutrients (silicate and nitrate) and TCO(2) anomaly fields, obtained from the difference between the "iron addition'' and "ambient'' (without iron) concentrations, also agreed well with the IronEx II observations. The enriched patch is tracked with an inert tracer similar to the SF6 used in the IronEx II. The modeled depth-time distribution of sinking biogenic silica (BSi) indicates that it would take more than 30 days after iron injection to detect any significant BSi export out of the euphotic zone. Sensitivity studies were performed to establish the importance of fertilized patch size, duration of fertilization, and the role of mesozooplankton grazing. A larger size of the iron patch tends to produce a broader extent and longer-lasting phytoplankton blooms. Longer duration prolongs phytoplankton growth, but higher zooplankton grazing pressure prevents significant phytoplankton biomass accumulation. With the same treatment of iron fertilization in the model, lowering mesozooplankton grazing rate generates much stronger diatom bloom, but it is terminated by Si(OH)(4) limitation after the initial rapid increase. Increasing mesozooplankton grazing rate, the diatom increase due to iron addition stays at minimum level, but small phytoplankton tend to increase. The numerical model experiments demonstrate the value of ecosystem modeling for evaluating the detailed interaction between biogeochemical cycle and iron fertilization in the equatorial Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree water deficit estimated by measuring water-related changes in stem radius (DeltaW) was compared with tree water deficit estimated from the output of a simple, physiologically reasonable model (DeltaW(E)), with soil water potential (Psi(soil)) and atmospheric vapor pressure deficit (VPD) as inputs. Values of DeltaW were determined by monitoring stem radius changes with dendrometers and detrending the results for growth, We followed changes in DeltaW and DeltaW(E) in Pinus sylvestris L. and Quercus pubescens Willd. over 2 years at a dry site (2001-2002; Salgesch, Wallis) and in Picea abies (L.) Karst. for 1 year at a wet site (1998; Davos, Graubuenden) in the Swiss Alps. The seasonal courses of DeltaW in deciduous species and in conifers at the same site were similar and could be largely explained by variation in DeltaW(E). This finding strongly suggests that DeltaW, despite the known species-specific differences in stomatal response to microclimate, is mainly explained by a combination of atmospheric and soil conditions. Consequently, we concluded that trees are unable to maintain any particular DeltaW. Either Psi(soil) or VPD alone provided poorer estimates of AWthan a model incorporating both factors. As a first approximation of DeltaW(E), Psi(soil) can be weighted so that the negative mean Psi(soil) reaches 65 to 75% of the positive mean daytime VPD over a season (Q. pubescens: similar to65%, P abies: similar to70%, P sylvestris: similar to75%). The differences in DeltaW among species can be partially explained by a different weighting of Psi(soil) against VPD. The DeltaW of P. sylvestris was more dependent on Psi(soil) than that of Q. pubescens, but less than that of P. abies, and was less dependent on VPD than that of P. abies and Q. pubescens. The model worked well for P. abies at the wet site and for Q. pubescens and P. sylvestris at the dry site, and may be useful for estimating water deficit in other tree species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two factors that have been suggested as key in explaining individual differences in fluid intelligence are working memory and sensory discrimination ability. A latent variable approach was used to explore the relative contributions of these two variables to individual differences in fluid intelligence in middle to late childhood. A sample of 263 children aged 7–12 years was examined. Correlational analyses showed that general discrimination ability (GDA)and working memory (WM) were related to each other and to fluid intelligence. Structural equation modeling showed that within both younger and older age groups and the sample as a whole, the relation between GDA and fluid intelligence could be accounted for by WM. While WM was able to predict variance in fluid intelligence above and beyond GDA, GDA was not able to explain significant amounts of variance in fluid intelligence, either in the whole sample or within the younger or older age group. We concluded that compared to GDA, WM should be considered the better predictor of individual differences in fluid intelligence in childhood. WM and fluid intelligence, while not being separable in middle childhood, develop at different rates, becoming more separable with age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.