1000 resultados para laser driver circuit
Resumo:
OBJECTIVE: Standard cardiopulmonary bypass (CPB) circuits with their large surface area and volume contribute to postoperative systemic inflammatory reaction and hemodilution. In order to minimize these problems a new approach has been developed resulting in a single disposable, compact arterio-venous loop, which has integral kinetic-assist pumping, oxygenating, air removal, and gross filtration capabilities (CardioVention Inc., Santa Clara, CA, USA). The impact of this system on gas exchange capacity, blood elements and hemolysis is compared to that of a conventional circuit in a model of prolonged perfusion. METHODS: Twelve calves (mean body weight: 72.2+/-3.7 kg) were placed on cardiopulmonary bypass for 6 h with a flow of 5 l/min, and randomly assigned to the CardioVention system (n=6) or a standard CPB circuit (n=6). A standard battery of blood samples was taken before bypass and throughout bypass. Analysis of variance was used for comparison. RESULTS: The hematocrit remained stable throughout the experiment in the CardioVention group, whereas it dropped in the standard group in the early phase of perfusion. When normalized for prebypass values, both profiles differed significantly (P<0.01). Both O2 and CO2 transfers were significantly improved in the CardioVention group (P=0.04 and P<0.001, respectively). There was a slightly higher pressure drop in the CardioVention group but no single value exceeded 112 mmHg. No hemolysis could be detected in either group with all free plasma Hb values below 15 mg/l. Thrombocyte count, when corrected by hematocrit and normalized by prebypass values, exhibited an increased drop in the standard group (P=0.03). CONCLUSION: The CardioVention system with its concept of limited priming volume and exposed foreign surface area, improves gas exchange probably because of the absence of detectable hemodilution, and appears to limit the decrease in the thrombocyte count which may be ascribed to the reduced surface. Despite the volume and surface constraints, no hemolysis could be detected throughout the 6 h full-flow perfusion period.
Resumo:
Expression of water soluble proteins of fresh pork Longissimus thoracis from 4 pure breed pigs (Duroc, Large White, Landrace, and Piétrain) was studied to identify candidate protein markers for meat quality. Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) was used to obtain the soluble protein profiles of Longissimus thoracis muscles. The pure breeds showed differences among the studied meat quality traits (pHu, drip loss, androstenone, marbling, intramuscular fat, texture, and moisture), but no significant differences were detected in sensory analysis. Associations between protein peaks obtained with SELDI-TOF-MS and meat quality traits, mainly water holding capacity, texture and skatole were observed. Of these peaks, a total of 10 peaks from CM10 array and 6 peaks from Q10 array were candidate soluble protein markers for pork loin quality. The developed models explained a limited proportion of the variability, however they point out interesting relationships between protein expression and meat quality
Resumo:
We present the application of terrestrial laser scanning (TLS) for the monitoring and characterization of an active landslide area in Val Canaria (Ticino, Southern Swiss Alps). At catchment scale, the study area is affected by a large Deep Seated Gravitational Slope Deformation (DSGSD) area presenting, in the lower boundary, several retrogressive landslides active since the 1990s. Due to its frequent landslide events this area was periodically monitored by TLS since 2006. Periodic acquisitions provided new information on 3D displacements at the bottom of slope and the detection of centimetre to decimetre level scale changes (e.g. rockfall and pre-failure deformations). In October 2009, a major slope collapse occured at the bottom of the most unstable area. Based on the comparison between TLS data before and after the collapse, we carried out a detailed failure mechanism analysis and volume calculation.
Resumo:
The purpose of this study was to evaluate the intraocular pressure (IOP)-lowering effect of modified goniopuncture with the 532-nm Nd : YAG selective laser trabeculoplasty (SLT) laser on eyes after deep sclerectomy with collagen implant (DSCI). This was an interventional cased series. The effects of modified goniopuncture on eyes with insufficient IOP-lowering after DSCI were observed. Goniopuncture was performed using a Q-switched, frequency-doubled 532-nm Nd : YAG laser (SLT-goniopuncture, SLT-G). Outcome measures were amount of IOP-lowering and rapidity of decrease after laser intervention. In all, 10 eyes of 10 patients with a mean age of 71.0±7.7 (SD) years were treated with SLT-G. The mean time of SLT-G after DSCI procedure was 7.1±10.9 months. SLT-G decreased IOP from an average of 16.1±3.4 mm Hg to 14.2±2.8 mm Hg (after 15 min), 13.6±3.9 mm Hg (at 1 day), 12.5±4.1 mm Hg (at 1 month), and 12.6±2.5 (at 6 months) (P<0.0125). There were no complications related to the intervention. Patients in this series achieved an average 22.5% of IOP reduction after SLT-G. The use of the SLT laser appears to be an effective and safe alternative to the traditional Nd : YAG laser for goniopuncture in eyes after DSCI, with potential advantages related to non-perforation of trabeculo-descemet's membrane (TDM).
Resumo:
Conventional methods are sometimes insufficient to identify human bacterial pathogens, and alternative techniques, often molecular, are required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified with a valid score 45.9% of 410 clinical isolates from 207 different difficult-to-identify species having required 16S rRNA gene sequencing. MALDI-TOF MS might represent an alternative to 16S rRNA gene sequencing.
Resumo:
We investigated a new procedure for gene transfer into the stroma of pig cornea for the delivery of therapeutic factors. A delimited space was created at 110 mum depth with a LDV femtosecond laser in pig corneas, and a HIV1-derived lentiviral vector expressing green fluorescent protein (GFP) (LV-CMV-GFP) was injected into the pocket. Corneas were subsequently dissected and kept in culture as explants. After 5 days, histological analysis of the explants revealed that the corneal pockets had closed and that the gene transfer procedure was efficient over the whole pocket area. Almost all the keratocytes were transduced in this area. Vector diffusion at right angles to the pocket's plane encompasses four (endothelium side) to 10 (epithelium side) layers of keratocytes. After 21 days, the level of transduction was similar to the results obtained after 5 days. The femtosecond laser technique allows a reliable injection and diffusion of lentiviral vectors to efficiently transduce stromal cells in a delimited area. Showing the efficacy of this procedure in vivo could represent an important step toward treatment or prevention of recurrent angiogenesis of the corneal stroma.
Resumo:
This manual will provide you the information needed for a general understanding of the principles of safe and lawful operation of a motor vehicle. However, it is NOT intended to serve as a precise statement of Iowa statutes concerning the operation of a motor vehicle and should not be considered as such. For further information, check the Code of Iowa, Chapters 321 through 321J, and the Iowa Department of Transportation rules contained in the Iowa Administrative Code.
Resumo:
This manual will provide you the information needed for a general understanding of the principles of safe and lawful operation of a motor vehicle. However, it is NOT intended to serve as a precise statement of Iowa statutes concerning the operation of a motor vehicle and should not be considered as such. For further information, check the Code of Iowa, Chapters 321 through 321J, and the Iowa Department of Transportation rules contained in the Iowa Administrative Code.
Resumo:
Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.
Resumo:
OBJECTIVE: Although recent experience suggests that transmyocardial laser revascularisation (TMLR) relieves angina, its mechanism of action remains undefined. We examined its functional effects and analysed its morphological features in an animal model of acute ischaemia. METHODS: A total of 15 pigs were randomised to ligation of left marginal arteries (infarction group, n = 5), to TMLR of the left lateral wall using a holmium:yttrium-aluminium garnet (Ho:YAG) laser (laser group, n = 5), and to both (laser-infarction group, n = 5). All the animals were sacrificed 1 month after the procedure. Haemodynamics and echocardiography with segmental wall motion score were carried out at both time intervals (scale 0-3: 0, normal; 1, hypokinesia; 2, akinesia; 3, dyskinesia). Histology of the involved area was analysed. RESULTS: Laser group showed no change of the segmental wall motion score of the involved area 30 min after the laser channels were made (score: 0 +/- 0). Infarction and laser infarction groups both showed a persistent and definitive increase of the segmental wall motion score (at 30 min: 1.6 +/- 0.3 and 2 +/- 0, respectively; at 1 month: 1.8 +/- 0.2 and 1.8 +/- 0.4, respectively). These increases were all statistically significant in comparison with baseline values (P < 0.5), however comparison between infarction and laser-infarction groups showed no significant difference. On macroscopic examination of the endocardial surface, no channel was opened. On histology, there were signs of neovascularisation around the channels in the laser group, whereas in the laser-infarction group the channels were embedded in the infarction scar. CONCLUSIONS: In this acute pig model, TMLR did not provide improvement of contractility of the ischaemic myocardium. To the degree that the present study pertains to the clinical setting, the results suggest that mechanisms other than blood flow through the channels should be considered, such as a laser-induced triggering of neovascularisation or neural destruction.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8x106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 mu l) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 mu s instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemining from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
Commercially available instruments for road-side data collection take highly limited measurements, require extensive manual input, or are too expensive for widespread use. However, inexpensive computer vision techniques for digital video analysis can be applied to automate the monitoring of driver, vehicle, and pedestrian behaviors. These techniques can measure safety-related variables that cannot be easily measured using existing sensors. The use of these techniques will lead to an improved understanding of the decisions made by drivers at intersections. These automated techniques allow the collection of large amounts of safety-related data in a relatively short amount of time. There is a need to develop an easily deployable system to utilize these new techniques. This project implemented and tested a digital video analysis system for use at intersections. A prototype video recording system was developed for field deployment. A computer interface was implemented and served to simplify and automate the data analysis and the data review process. Driver behavior was measured at urban and rural non-signalized intersections. Recorded digital video was analyzed and used to test the system.