959 resultados para intersubband relaxation
Resumo:
During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.
Resumo:
BACKGROUND AND OBJECTIVE: The aim of this study was to determine which of two clinically applied methods, electromyography or acceleromyography, was less affected by external disturbances, had a higher sensitivity and which would provide the better input signal for closed loop control of muscle relaxation. METHODS: In 14 adult patients, anaesthesia was induced with intravenous opioids and propofol. The response of the thumb to ulnar nerve stimulation was recorded on the same arm. Mivacurium was used for neuromuscular blockade. Under stable conditions of relaxation, the infusion-rate was decreased and the effects of turning the hand were investigated. RESULTS: Electromyography and acceleromyography both reflected the change of the infusion rate (P = 0.015 and P < 0.001, respectively). Electromyography was significantly less affected by the hand-turn (P = 0.008) than acceleromyography. While zero counts were detected with acceleromyography, electromyography could still detect at least one count in 51.1%. CONCLUSIONS: Electromyography is more reliable for use in daily practice as it is less influenced by external disturbances than acceleromyography.
Resumo:
OBJECTIVES: To evaluate the relationship between T1 after intravenous contrast administration (T1Gd) and Delta relaxation rate (DeltaR1) = (1/T1(Gd) - 1/T1o) in the delayed Gadolinium-Enhanced MRI of cartilage (dGEMRIC) evaluation of cartilage repair tissue. MATERIALS AND METHODS: Thirty single MR examinations from 30 patients after matrix-associated autologous chondrocyte transplantations of the knee joint with different postoperative intervals were examined using an 8-channel knee-coil at 3T. T1 mapping using a 3D GRE sequence with a 35/10 degrees flip angle excitation pulse combination was performed before and after contrast administration (dGEMRIC technique). T1 postcontrast (T1(Gd)) and the DeltaR1 (relative index of pre- and postcontrast R1 value) were calculated for repair tissue and the weight-bearing normal appearing control cartilage. For evaluation of the different postoperative intervals, MR exams were subdivided into 3 groups (up to 12 months, 12-24 months, more than 24 months). For statistical analysis Spearman correlation coefficients were calculated. RESULTS: The mean value for T1 postcontrast was 427 +/- 159 ms, for DeltaR1 1.85 +/- 1.0; in reference cartilage 636 +/- 181 ms for T1 postcontrast and 0.83 +/- 0.5 for DeltaR1.The correlation coefficients were highly significant between T1 (Gd) and DeltaR1 for repair tissue (0.969) as well as normal reference cartilage (0.928) in total, and for the reparative cartilage in the early, middle postoperative, and late postoperative interval after surgery (R values: -0.986, -0.970, and -0.978, respectively). Using either T1(Gd) or DeltaR1, the 2 metrics resulted in similar conclusions regarding the time course of change of repair tissue and control tissue, namely that highly significant (P > 0.01) differences between cartilage repair tissue and reference cartilage were found for all follow-up groups. Additionally, for both metrics highly significant differences (P < 0.01) between early follow up and the 2 later postoperative groups for cartilage repair tissue were found. No statistical differences were found between the 2 later follow-up groups of reparative cartilage either for T1 (Gd) or DeltaR1. CONCLUSION: The high correlation between T1 (Gd) and DeltaR1 and the comparable conclusions reached utilizing metric implies that T1 mapping before intravenous administration of MR contrast agent is not necessary for the evaluation of repair tissue. This will help to reduce costs, inconvenience for the patients, simplifies the examination procedure, and makes dGEMRIC more attractive for follow-up of patients after cartilage repair surgeries.
Resumo:
Absolute quantitation of clinical (1)H-MR spectra is virtually always incomplete for single subjects because the separate determination of spectrum, baseline, and transverse and longitudinal relaxation times in single subjects is prohibitively long. Integrated Processing and Acquisition of Data (IPAD) based on a combined 2-dimensional experimental and fitting strategy is suggested to substantially improve the information content from a given measurement time. A series of localized saturation-recovery spectra was recorded and combined with 2-dimensional prior-knowledge fitting to simultaneously determine metabolite T(1) (from analysis of the saturation-recovery time course), metabolite T(2) (from lineshape analysis based on metabolite and water peak shapes), macromolecular baseline (based on T(1) differences and analysis of the saturation-recovery time course), and metabolite concentrations (using prior knowledge fitting and conventional procedures of absolute standardization). The procedure was tested on metabolite solutions and applied in 25 subjects (15-78 years old). Metabolite content was comparable to previously found values. Interindividual variation was larger than intraindividual variation in repeated spectra for metabolite content as well as for some relaxation times. Relaxation times were different for various metabolite groups. Parts of the interindividual variation could be explained by significant age dependence of relaxation times.
Resumo:
Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.
Resumo:
AIM To determine the relation between the extent and distribution of left ventricular hypertrophy and the degree of disturbance of regional relaxation and global left ventricular filling. METHODS Regional wall thickness (rWT) was measured in eight myocardial regions in 17 patients with hypertrophic cardiomyopathy, 12 patients with hypertensive heart disease, and 10 age matched normal subjects, and an asymmetry index calculated. Regional relaxation was assessed in these eight regions using regional isovolumetric relaxation time (rIVRT) and early to late peak filling velocity ratio (rE/A) derived from Doppler tissue imaging. Asynchrony of rIVRT was calculated. Doppler left ventricular filling indices were assessed using the isovolumetric relaxation time, the deceleration time of early diastolic filling (E-DT), and the E/A ratio. RESULTS There was a correlation between rWT and both rIVRT and rE/A in the two types of heart disease (hypertrophic cardiomyopathy: r = 0.47, p < 0.0001 for rIVRT; r = -0.20, p < 0.05 for rE/A; hypertensive heart disease: r = 0.21, p < 0.05 for rIVRT; r = -0.30, p = 0.003 for rE/A). The degree of left ventricular asymmetry was related to prolonged E-DT (r = 0. 50, p = 0.001) and increased asynchrony (r = 0.42, p = 0.002) in all patients combined, but not within individual groups. Asynchrony itself was associated with decreased E/A (r = -0.39, p = 0.01) and protracted E-DT (r = 0.69, p < 0.0001) and isovolumetric relaxation time (r = 0.51, p = 0.001) in all patients. These correlations were still significant for E-DT in hypertrophic cardiomyopathy (r = 0.56, p = 0.02) and hypertensive heart disease (r = 0.59, p < 0.05) and for isovolumetric relaxation time in non-obstructive hypertrophic cardiomyopathy (n = 8, r = 0.87, p = 0.005). CONCLUSIONS Non-invasive ultrasonographic examination of the left ventricle shows that in both hypertrophic cardiomyopathy and hypertensive heart disease, the local extent of left ventricular hypertrophy is associated with regional left ventricular relaxation abnormalities. Asymmetrical distribution of left ventricular hypertrophy is indirectly related to global left ventricular early filling abnormalities through regional asynchrony of left ventricular relaxation.
Resumo:
BACKGROUND The severity of aortic regurgitation can be estimated using pressure half time (PHT) of the aortic regurgitation flow velocity, but the correlation between regurgitant fraction and PHT is weak. AIM To test the hypothesis that the association between PHT and regurgitant fraction is substantially influenced by left ventricular relaxation. METHODS In 63 patients with aortic regurgitation, subdivided into a group without (n = 22) and a group with (n = 41) left ventricular hypertrophy, regurgitant fraction was calculated using the difference between right and left ventricular cardiac outputs. Left ventricular relaxation was assessed using the early to late diastolic Doppler tissue velocity ratio of the mitral annulus (E/ADTI), the E/A ratio of mitral inflow (E/AM), and the E deceleration time (E-DT). Left ventricular hypertrophy was assessed using the M mode derived left ventricular mass index. RESULTS The overall correlation between regurgitant fraction and PHT was weak (r = 0.36, p < 0.005). In patients without left ventricular hypertrophy, there was a significant correlation between regurgitant fraction and PHT (r = 0.62, p < 0.005), but not in patients with left ventricular hypertrophy. In patients with a left ventricular relaxation abnormality (defined as E/ADTI< 1, E/AM< age corrected lower limit, E-DT >/= 220 ms), no associations between regurgitant fraction and PHT were found, whereas in patients without left ventricular relaxation abnormalities, the regurgitant fraction to PHT relations were significant (normal E/AM: r = 0.57, p = 0.02; E-DT< 220 ms: r = 0.50, p < 0.001; E/ADTI < 1: r = 0.57, p = 0.02). CONCLUSIONS Only normal left ventricular relaxation allows a significant decay of PHT with increasing aortic regurgitation severity. In abnormal relaxation, which is usually present in left ventricular hypertrophy, wide variation in prolonged backward left ventricular filling may cause dissociation between the regurgitant fraction and PHT. Thus the PHT method should only be used in the absence of left ventricular relaxation abnormalities.
Resumo:
Evidence of negative conspecific density dependence (NDD) operating on seedling survival and sapling recruitment has accumulated recently. In contrast, evidence of NDD operating on growth of trees has been circumstantial at best. Whether or not local NDD at the level of individual trees leads to NDD at the level of the community is still an open question. Moreover, whether and how perturbations interfere with these processes have rarely been investigated. We applied neighborhood models to permanent plot data from a Bornean dipterocarp forest censused over two 10-11 year periods. Although the first period was only lightly perturbed, a moderately strong El Nino event causing severe drought occurred in the first half of the second period. Such events are an important component of the environmental stochasticity affecting the region. We show that local NDD on growth of small-to-medium-sized trees may indeed translate to NDD at the level of the community. This interpretation is based on increasingly negative effects of bigger conspecific neighbors on absolute growth rates of individual trees with increasing basal area across the 18 most abundant overstory species in the first period. However, this relationship was much weaker in the second period. We interpreted this relaxation of local and community-level NDD as a consequence of increased light levels at the forest floor due to temporary leaf and twig loss of large trees in response to the drought event. Mitigation of NDD under climatic perturbation acts to decrease species richness, especially in forest overstory and therefore has an important role in determining species relative abundances at the site.
Resumo:
We present steady-state absorption and emission spectroscopy and femtosecond broadband photoluminescence up-conversion spectroscopy studies of the electronic relaxation of Os(dmbp)3 (Os1) and Os(bpy)2(dpp) (Os2) in ethanol, where dmbp is 4,4′-dimethyl-2,2′-biypridine, bpy is 2,2′-biypridine, and dpp is 2,3-dipyridyl pyrazine. In both cases, the steady-state phosphorescence is due to the lowest 3MLCT state, whose quantum yield we estimate to be ≤5.0 × 10–3. For Os1, the steady-state phosphorescence lifetime is 25 ns. In both complexes, the photoluminescence excitation spectra map the absorption spectrum, pointing to an excitation wavelength-independent quantum yield. The ultrafast studies revealed a short-lived (≤100 fs) fluorescence, which stems from the lowest singlet metal-to-ligand-charge-transfer (1MLCT) state and decays by intersystem crossing to the manifold of 3MLCT states. In addition, Os1 exhibits a 50 ps lived emission from an intermediate triplet state at an energy 2000 cm–1 above that of the long-lived (25 ns) phosphorescence. In Os2, the 1MLCT–3MLCT intersystem crossing is faster than that in Os1, and no emission from triplet states is observed other than the lowest one. These observations are attributed to a higher density of states or a smaller energy spacing between them compared with Os1. They highlight the importance of the energetics on the rate of intersystem crossing.
Resumo:
Objective Albeit clear advances in the treatment of SLE, many patients still present with refractory lupus nephritis requiring new treatment strategies for this disease. Here we determined whether reduced doses of the topoisomerase I inhibitor irinotecan, which is known as chemotherapeutic agent, were able to suppress SLE in NZB/W F1 mice. We further evaluated the potential mechanism how irinotecan influenced the course of SLE. Methods NZB/W F1 mice were treated with low dose irinotecan either from week 24 of age or from established glomerulonephritis defined by a proteinuria ≥grade 3+. Binding of anti-dsDNA antibodies was measured by ELISA; and DNA relaxation was visualized by gel electrophoresis. Results Significantly reduced irinotecan dosages improved lupus nephritis and prolonged survival in NZB/W F1 mice. The lowest dose successfully used for the treatment of established murine lupus nephritis was more than 50 times lower than the dose usually applied for chemotherapy in humans. As a mechanism, low dose irinotecan reduced B cell activity; however, the levels of B cell activity in irinotecan-treated mice were similar to those in Balb/c mice of the same age suggesting that irinotecan did not induce a clear immunosuppression. In addition, incubation of double-stranded (ds) DNA with topoisomerase I increased binding of murine and human anti-dsDNA antibodies showing for the first time that relaxed DNA is more susceptible to anti-dsDNA antibody binding. This effect was reversed by addition of the topoisomerase I inhibitor camptothecin. Conclusion Our results propose topoisomerase I inhibitors as a novel and targeted therapy for SLE. © 2014 American College of Rheumatology.