921 resultados para interleukin-1 gene complex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. OBJECTIVE To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. PATIENTS 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. METHODS SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). RESULTS Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. CONCLUSIONS Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathelicidins constitute potent antimicrobial peptides characterized by a high cationic charge that enables strong interactions with nucleic acids. In fact, the only human cathelicidin LL-37 triggers rapid sensing of nucleic acids by plasmacytoid dendritic cells (pDC). Among the porcine cathelicidins, phylogenetic analysis of the C-terminal mature peptide showed that porcine myeloid antimicrobial peptide (PMAP)-36 was the most closely related of the 11 porcine cathelicidins to human LL-37. Despite several investigations evaluating potent antimicrobial functions of porcine cathelicidins, nothing is known about their ability to promote pDC activation. We therefore investigated the capacity of the proline-arginine-rich 39-aa peptide, PMAP-23, PMAP-36, and protegrin-1 to complex with bacterial DNA or synthetic RNA molecules and facilitate pDC activation. We demonstrate that these peptides mediate a rapid and efficient uptake of nucleic acids within minutes, followed by robust IFN-α responses. The highest positively charged cathelicidin, PMAP-36, was found to be the most potent peptide tested for this effect. The peptide-DNA complexes were internalized and also found to associate with the cell membranes of pDC. The amphipathic conformation typical of PMAP-36 was not required for IFN-α induction in pDC. We also demonstrate that PMAP-36 can mediate IFN-α induction in pDC stimulated by Escherichia coli, which alone fail to activate pDC. This response was weaker with a scrambled PMAP-36, relating to its lower antimicrobial activity. Collectively, our data suggest that the antimicrobial and nucleic acid-complexing properties of cathelicidins can mediate pDC activation-promoting adaptive immune responses against microbial infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM To assess the pro-angiogenic and pro-inflammatory capacity of the dentine-pulp complex in response to the prolyl hydroxylase inhibitor L-mimosine in a tooth slice organ culture model. METHODOLOGY Human teeth were sectioned transversely into 600-μm-thick slices and cultured in medium supplemented with serum and antibiotics. Then, pulps were stimulated for 48 h with L-mimosine. Pulps were subjected to viability measurements based on formazan formation in MTT assays. In addition, histological evaluation of pulps was performed based on haematoxylin and eosin staining. Culture supernatants were subjected to immunoassays for vascular endothelial growth factor (VEGF) to determine the pro-angiogenic capacity and to immunoassays for interleukin (IL)-6 and IL-8 to assess the pro-inflammatory response. Interleukin-1 served as pro-inflammatory control. Echinomycin was used to inhibit hypoxia-inducible factor-1 (HIF-1) alpha activity. Data were analysed using Student's t-test and Mann-Whitney U test. RESULTS Pulps within tooth slices remained vital upon L-mimosine stimulation as indicated by formazan formation and histological evaluation. L-mimosine increased VEGF production when normalized to formazan formation in the pulp tissue of the tooth slices (P < 0.05). This effect on VEGF was reduced by echinomycin (P < 0.01). Changes in normalized IL-6 and IL-8 levels upon treatment with L-mimosine did not reach the level of significance (P > 0.05), whilst treatment with IL-1, which served as positive control, increased IL-6 (P < 0.05) and IL-8 levels (P < 0.05). CONCLUSIONS The prolyl hydroxylase inhibitor L-mimosine increased VEGF production via HIF-1 alpha in the tooth slice organ culture model whilst inducing no prominent increase in IL-6 and IL-8. Pre-clinical studies will reveal if these in vitro effects translate into dental pulp regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases.Molecular Psychiatry advance online publication, 8 December 2015; doi:10.1038/mp.2015.174.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing evidence demonstrates that the thrombin receptor (protease activated receptor-1, PAR-1) plays a major role in tumor invasion and contributes to the metastatic phenotype of human melanoma. We demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. The promoter of the PAR-1 gene contains multiple putative AP-2 and Sp1 consensus elements. We provide evidence that an inverse correlation exists between the expression of AP-2 and the expression of PAR-1 in human melanoma cells. Re-expression of AP-2 in WM266-4 melanoma cells (AP-2 negative) resulted in decreased mRNA and protein expression of PAR-1 and significantly reduced the tumor potential in nude mice. ChIP analysis of the PAR-1 promoter regions bp −365 to −329 (complex 1) and bp −206 to −180 (complex 2) demonstrates that in metastatic cells Sp1 is predominantly binding to the PAR-1 promoter, while in nonmetastatic cells AP-2 is bound. In vitro analysis of complex 1 demonstrates that AP-2 and Sp1 bind to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic cells had increased promoter activity compared to low and nonmetastatic melanoma cells. Our data shows that exogenous AP-2 expression decreased promoter activity, while transient expression of Sp1 further activated expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrates that the regulation of PAR-1 is mediated through interactions with AP-2 and Sp1. Moreover, loss of AP-2 in metastatic cells alters the AP-2 to Sp1 ratio and DNA-binding activity resulting in overexpression of PAR-1. In addition, we evaluated the expression of AP-2 and PAR-1 utilizing a tissue microarray of 93 melanocytic lesions spanning from benign nevi to melanoma metastasis. We report loss of AP-2 expression in malignant tumors compared to benign tissue while PAR-1 was expressed more often in metastatic melanoma cells than in benign melanocytes. We propose that loss of AP-2 results in increased expression of PAR-1, which in turn results in upregulation of gene products that contribute to the metastatic phenotype of melanoma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Characterization of RCC tumors indicates that the most frequent genetic event associated with the initiation of tumor formation involves a loss of heterozygosity or cytogenetic aberration on the short arm of human chromosome 3. A tumor suppressor locus Nonpapillary Renal Carcinoma-1 (NRC-1, OMIM ID 604442) has been previously mapped to a 5–7 cM region on chromosome 3p12 and shown to induce rapid tumor cell death in vivo, as demonstrated by functional complementation experiments. ^ To identify the gene that accounts for the tumor suppressor activities of NRC-1, fine-scale physical mapping was conducted with a novel real-time quantitative PCR based method developed in this study. As a result, NRC-1 was mapped within a 4.6-Mb region defined by two unique sequences within UniGene clusters Hs.41407 and Hs.371835 (78,545Kb–83,172Kb in the NCBI build 31 physical map). The involvement of a putative tumor suppressor gene Robo1/Dutt1 was excluded as a candidate for NRC-1. Furthermore, a transcript map containing eleven candidate genes was established for the 4.6-Mb region. Analyses of gene expression patterns with real-time quantitative RT-PCR assays showed that one of the eleven candidate genes in the interval (TSGc28) is down-regulated in 15 out of 20 tumor samples compared with matched normal samples. Three exons of this gene have been identified by RACE experiments, although additional exon(s) seem to exist. Further gene characterization and functional studies are required to confirm the gene as a true tumor suppressor gene. ^ To study the cellular functions of NRC-1, gene expression profiles of three tumor suppressive microcell hybrids, each containing a functional copy of NRC-1, were compared with those of the corresponding parental tumor cell lines using 16K oligonucleotide microarrays. Differentially expressed genes were identified. Analyses based on the Gene Ontology showed that introduction of NRC-1 into tumor cell lines activates genes in multiple cellular pathways, including cell cycle, signal transduction, cytokines and stress response. NRC-1 is likely to induce cell growth arrest indirectly through WEE1. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is the fourth leading cause of adult cancer death in the United States. At the time of diagnosis, most patients with pancreatic cancer have advanced and metastatic disease, which makes most of the traditional therapeutic strategies are ineffective for pancreatic cancer. A better understanding of the molecular basis of pancreatic cancer will provide the approach to identify the new strategies for early diagnosis and treatment. NF-κB is a family of transcription factor that play important roles in immune response, cell growth, apoptosis, and tumor development. We have shown that NF-κB is constitutively activated in most human pancreatic tumor tissues and cell lines, but not in the normal tissues and HPV E6E7 gene-immortalized human pancreatic ductal epithelial cells (HPDE/E6E7). By infecting the pancreatic cancer cell line Aspc-1 with a replication defective retrovirus expressing phosphorylation-defective IκBα (IκBαM), the constitutive NF-κB activation is blocked. Subsequent injection of this Aspc-1/IκBαM cells into the pancreas of athymic nude mice showed that liver metastasis is suppressed by the blockade of NF-κB activation. Current studies showed that an autocrine mechanism accounts for the constitutive activation of NF-κB in metastatic human pancreatic cancer cell lines, but not in nonmetastatic human pancreatic cancer cell lines. Further investigation showed that interleukin-1α (IL-1α) was the primary cytokine secreted by these cells that activates NF-κB. Inhibition of IL-1α activity suppressed the constitutive activation of NF-κB and the expression of its downstream target gene, uPA, in metastatic pancreatic cancer cell lines. Even though IL-1α is one of the previously identified NF-κB downstream target genes, our results demonstrate that regulation of IL-1α expression is independent of NF-κB and primarily dependent on AP-1 activity, which is in part induced by overexpression of EGF receptors and activation of MAP kinases. In conclusion, our findings suggest a possible mechanism by which NF-κB is constitutively activated in metastatic human pancreatic cancer cells and a possible missing mechanistic links between inflammation and cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated expression levels of the bcl-2 proto-oncogene have been correlated with the appearance of androgen independence in prostate cancer. Although bcl-2 was first cloned as the t (14:18) translocation breakpoint from human follicular B cell lymphoma, the mechanism of overexpression of bcl-2 is largely undefined for advanced prostate cancer, there being no gross alterations in the gene structure. We investigated the role of the product of the prostate apoptosis response gene-4 (Par-4) and the product of the Wilms' tumor 1 gene (WT1) in the regulation of Bcl-2 expression in prostate cancer cell lines. We observed growth arrest and apoptosis, upon decreasing Bcl-2 protein and transcript in the high Bcl-2 expressing, androgen-independent prostate cancer cell lines, by all trans-retinoic acid treatment but this did not occur in the androgen-dependent cell lines expressing low levels of Bcl-2. Changes in localization of Par-4, and an induction in the expression of WT1 protein accompanied the decrease in the Bcl-2 protein and transcript following all trans-retinoic acid treatment, in the androgen-independent prostate cancer cell line. In stable clones expressing ectopic Par-4 we observed decreased Bcl-2 protein and transcript. This was accompanied by an induction in WT1 expression. Finally, we detected Par-4 and WT1 proteins binding to a previously identified WT1 binding site on the bcl-2 promoter both in vitro and in vivo leading to a decrease in transcription from the bcl-2 promoter. We conclude that Par-4 regulates Bcl-2 through a WT1 binding site on the bcl-2 promoter. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light absorption is an important process for energy production and sensory perception in many organisms. In the filamentous fungus, Neurospora crassa, blue-light is an important regulator of both asexual and sexual development, but the identity of the blue-light receptor is unknown. The work presented in this dissertation initiated the characterization of the putative N. crassa opsin photoreceptor, NOP-1. Opsins were thought to exist only in the archaea and mammals until the discovery of nop-1. All opsins have the same conserved structure of seven transmembrane helical domains with a lysine residue in the seventh helix specific for forming a Schiff-base linkage with retinal. The predicted NOP-1 protein sequence is equally similar to archaeal rhodopsins and a newly identified fungal opsin-related protein group (ORPs). ORPs maintain the seven transmembrane helical structure of opsins, but lack the conserved lysine residue for binding retinal. An ORP gene, orp-1 was identified in N. crassa and this work includes the cloning and sequence analysis of this gene. Characterization of NOP-1 function in N. crassa development began with the construction of a Δnop-1 deletion mutant. Extensive phenotypic analysis of Δnop-1 mutants revealed only subtle defects during development primarily under environmental conditions that induce a stress response. NOP-1 was overexpressed in the heterologous system Pichia pastoris, and it was demonstrated that NOP-1 protein bound all-trans retinal to form a green-light absorbing pigment (λmax = 534 nm) with a photochemical reaction cycle similar to archaeal sensory rhodopsins. nop-1 gene expression was monitored during N. crassa development. nop-1 transcript is highly expressed during asexual sporulation (conidiation) and transcript levels are abundant in the later stages of conidial development. nop-1 expression is not regulated by blue-light or elevated temperatures. Potential functions for NOP-1 were discovered through the transcriptional analysis of conidiation-associated genes in Δnop-1 mutants. NOP-1 exhibits antagonistic transcriptional regulation of conidiation-associated genes late in conidial development, by enhancing the carotenogenic gene, al-2 and repressing the conidiation-specific genes, con-10 and con-13. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The outer plastid envelope protein OEP16-1 was previously identified as an amino acid-selective channel protein and translocation pore for NADPH:protochlorophyllide oxidoreductase A (PORA). Reverse genetic approaches used to dissect these mutually not exclusive functions of OEP16-1 in planta have led to descriptions of different phenotypes resulting from the presence of several mutant lines in the SALK_024018 seed stock. In addition to the T-DNA insertion in the AtOEP16-1 gene, lines were purified that contain two additional T-DNA insertions and as yet unidentified point mutations. In a first attempt to resolve the genetic basis of four different lines in the SALK_024018 seed stock, we used genetic transformation with the OEP16-1 cDNA and segregation analyses after crossing out presumed point mutations. We show that AtOEP16-1 is involved in PORA precursor import and by virtue of this activity confers photoprotection onto etiolated seedlings during greening

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alt a 1 is a protein found in Alternaria alternata spores related to virulence and pathogenicity and considered to be responsible for chronic asthma in children. We found that spores of Alternaria inoculated on the outer surface of kiwifruits did not develop hyphae. Nevertheless, the expression of Alt a 1 gene was upregulated, and the protein was detected in the pulp where it co-localized with kiwi PR5. Pull-down assays demonstrated experimentally that the two proteins interact in such a way that Alt a 1 inhibits the enzymatic activity of PR5. These results are relevant not only for plant defense, but also for human health as patients with chronic asthma could suffer from an allergic reaction when they eat fruit contaminated with Alternaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissecting aortic aneurysm is the hallmark of Marfan syndrome (MFS) and the result of mutations in fibrillin-1, the major constituent of elastin-associated extracellular microfibrils. It is yet to be established whether dysfunction of fibrillin-1 perturbs the ability of the elastic vessel wall to sustain hemodynamic stress by disrupting microfibrillar assembly, by impairing the homeostasis of established elastic fibers, or by a combination of both mechanisms. The pathogenic sequence responsible for the mechanical collapse of the elastic lamellae in the aortic wall is also unknown. Targeted mutation of the mouse fibrillin-1 gene has recently suggested that deficiency of fibrillin-1 reduces tissue homeostasis rather than elastic fiber formation. Here we describe another gene-targeting mutation, mgR, which shows that underexpression of fibrillin-1 similarly leads to MFS-like manifestations. Histopathological analysis of mgR/mgR specimens implicates medial calcification, the inflammatory–fibroproliferative response, and inflammation-mediated elastolysis in the natural history of dissecting aneurysm. More generally, the phenotypic severity associated with various combinations of normal and mutant fibrillin-1 alleles suggests a threshold phenomenon for the functional collapse of the vessel wall that is based on the level and the integrity of microfibrils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ETS1 is a cellular homologue of the product of the viral ets oncogene of the E26 virus, and it functions as a tissue-specific transcription factor. It plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. ETS1 controls the expression of critical genes involved in these processes by binding to ets binding sites present in the transcriptional regulatory regions. The ETS1 gene generates two proteins, p51 and a spliced variant, p42, lacking exon VII. In this paper we show that p42-ETS1 expression bypasses the damaged Fas-induced apoptotic pathway in DLD1 colon carcinoma cells by up-regulating interleukin 1β-converting enzyme (ICE)/caspase-1 and causes these cancer cells to become susceptible to the effects of the normal apoptosis activation system. ICE/caspase-1 is a redundant system in many cells and tissues, and here we demonstrate that it is important in activating apoptosis in cells where the normal apoptosis pathway is blocked. Blocking ICE/caspase-1 activity by using specific inhibitors of this protease prevents the p42-ETS1-induced apoptosis from occurring, indicating that the induced ICE/caspase-1 enzyme is responsible for killing the cancer cells. p42-ETS1 activates a critical alternative apoptosis pathway in cancer cells that are resistant to normal immune attack, and thus it may be useful as an anticancer therapeutic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrin-linked kinase (ILK) is an ankyrin repeat containing serine-threonine protein kinase that can interact directly with the cytoplasmic domains of the β1 and β3 integrin subunits and whose kinase activity is modulated by cell–extracellular matrix interactions. Overexpression of constitutively active ILK results in loss of cell–cell adhesion, anchorage-independent growth, and tumorigenicity in nude mice. We now show that modest overexpression of ILK in intestinal epithelial cells as well as in mammary epithelial cells results in an invasive phenotype concomitant with a down-regulation of E-cadherin expression, translocation of β-catenin to the nucleus, formation of a complex between β-catenin and the high mobility group transcription factor, LEF-1, and transcriptional activation by this LEF-1/β-catenin complex. We also find that LEF-1 protein expression is rapidly modulated by cell detachment from the extracellular matrix, and that LEF-1 protein levels are constitutively up-regulated at ILK overexpression. These effects are specific for ILK, because transformation by activated H-ras or v-src oncogenes do not result in the activation of LEF-1/β-catenin. The results demonstrate that the oncogenic properties of ILK involve activation of the LEF-1/β-catenin signaling pathway, and also suggest ILK-mediated cross-talk between cell–matrix interactions and cell–cell adhesion as well as components of the Wnt signaling pathway.