985 resultados para interbranchial lymphoid tissue
Resumo:
OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.
Resumo:
Megazol (CL 64,855) a very effective drug in experimental infections by Trypanosoma cruzi, and also in in vitro assays with vertebrate forms of the parasite, had its parasite, had its activity upon macromolecule biosynthesis tested using tissue culture-derived amastigote forms. Megazol presented a drastic inhibition of [3H]-uridine incorporation, suggesting a selective activity upon protein synthesis. Comparing the three drugs, megazol was more potent than nifurtimox and benznidazole in inhibiting protein an DNA synthesis. Megazol showed a 91% of inhibition of [3H]-leucine incorporation whereas nifurtimox and benznidazole, 0% and 2%, respectively. These latter two drugs inhibited the incorporation of all the precursors tested at similar levels, but the concentration of benznidazole was always three times higher, suggesting different mechanisms of action or, more probably, a greater efficiency of the 5-nitrofuran derivate in relation to the 2-nitroimidazole. So, wes conclude that the mode of action of megazol is different from the ones of nifurtimox and benznidazole and that its primary effect is associated with an impairment of protein synthesis.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.
Resumo:
When we think of cardiac affection in the context of systemic lupus erythematosus (SLE), we usually refer to pericarditis first. As frequent as this affection is, it is actually not the only cardio-vascular problem that occurs with this systemic inflammatory disease. Are the cardiac events--ranging from multiple heart valve involvements to increased cardiovascular risks--clinically significant? And are they involving a specific follow-up, treatment or support? We are therefore trying to evaluate these questions in order to give some recommendations to any practitioners following up a lupus patient, or a patient suffering from any other inflammatory systemic disease.
Resumo:
Haemolymph, heads, salivary glands, crops, midguts, hindguts, and Malpighian tubules from Rhodnius prolixus and Triatoma infestans were extracted in phosphate or Tris buffer saline with calcium, and tested for agglutination and lytic activities by microtitration against both vertebrateerythrocytes and cultured epimatigote forms of Trypanosoma rangeli. Haemagglutination activity against rabbit erythrocytes was found in the crop, midgut and hindgut extracts of T. infestans but only in the haemolymph of R. prolixus. Higher titres of parasite agglutinins were found in R. prolixus haemolymph than T. infestans, whilst the converse occurred for the tissue extracts. In addition, the extracts of T. infestans salivary glands, but not those of R. prolixus, showed a trypanolytic activity that was heat-inactivated and was not abolished by pre-incubation with any of the sugars or glycoproteins tested. T. infestans, which is refractory to infection by T. rangeli, thus appears to contain a much wider distribution of agglutinating and trypanolytic factors in its tissues than the more susceptible species, R. prolixus
Resumo:
Elastic tissue hyperplasia, revealed by means of histological, immunocytochemical and ultrastructural methods, appeared as a prominent change in surgical liver biopsies taken from 61 patients with schistosomal periportal and septal fibrosis. Such hyperplasia was absent in ecperimental murine schistosomiasis, including mice with "pipe-stem" fibrosis. Displaced connective tissue cells in periportal areas, such as smooth muscle cells, more frequently observed in human material, could be the site of excessive elastin synthesis, and could explain the differences observed in human and experimental materials. Elastic tissue, sometimes represented by its microfibrillar components, also appeared to be more condensed in areas of matrix (collagen) degradation, suggesting a participation of this tissue in the remodelling of the extracellular matrix. By its rectratile properties elastic tissue hyperplasia in hepatic schistosomiasis can cause vascular narrowing and thus play a role in the pathogenesis of portal hypeertension.
Resumo:
Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus) or organized tissues or organs put in culture, under controlled sterile conditions.
Resumo:
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.
Resumo:
NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.
Resumo:
BACKGROUND/AIM: Both steatosis and insulin resistance have been linked to accelerated fibrosis in chronic hepatitis C. Connective tissue growth factor (CTGF) plays a major role in extracellular matrix production in fibrotic disorders including cirrhosis, and its expression is stimulated in vitro by insulin and glucose. We hypothesized that CTGF may link steatosis, insulin resistance and fibrosis. METHODS: We included 153 chronic hepatitis C patients enrolled in the Swiss Hepatitis C Cohort Study and for whom a liver biopsy and plasma samples were available. CTGF expression was assessed quantitatively by immunohistochemistry. In 94 patients (57 with genotypes non-3), plasma levels of glucose, insulin and leptin were also measured. CTGF synthesis was investigated by immunoblotting on LX-2 stellate cells. RESULTS: Connective tissue growth factor expression was higher in patients with steatosis (P=0.039) and in patients with fibrosis (P=0.008) than those without these features. CTGF levels were neither associated with insulinaemia or with glycaemia, nor with inflammation. By multiple regression analysis, CTGF levels were independently associated with steatosis, a past history of alcohol abuse, plasma leptin and HCV RNA levels; when only patients with genotypes non-3 were considered, CTGF levels were independently associated with a past history of alcohol abuse, plasma leptin levels and steatosis. Leptin stimulated CTGF synthesis in LX-2 cells. CONCLUSIONS: In patients with chronic hepatitis C and steatosis, CTGF may promote fibrosis independently of inflammation. CTGF may link steatosis and fibrosis via increased leptin levels.
Resumo:
Having determined in a phase I study the maximum tolerated dose of high-dose ifosfamide combined with high-dose doxorubicin, we now report the long-term results of a phase II trial in advanced soft-tissue sarcomas. Forty-six patients with locally advanced or metastatic soft-tissue sarcomas were included, with age <60 years and all except one in good performance status (0 or 1). The chemotherapy treatment consisted of ifosfamide 10 g m(-2) (continuous infusion for 5 days), doxorubicin 30 mg m(-2) day(-1) x 3 (total dose 90 mg m(-2)), mesna and granulocyte-colony stimulating factor. Cycles were repeated every 21 days. A median of 4 (1-6) cycles per patient was administered. Twenty-two patients responded to therapy, including three complete responders and 19 partial responders for an overall response rate of 48% (95% CI: 33-63%). The response rate was not different between localised and metastatic diseases or between histological types, but was higher in grade 3 tumours. Median overall survival was 19 months. Salvage therapies (surgery and/or radiotherapy) were performed in 43% of patients and found to be the most significant predictor for favourable survival (exploratory multivariate analysis). Haematological toxicity was severe, including grade > or =3 neutropenia in 59%, thrombopenia in 39% and anaemia in 27% of cycles. Three patients experienced grade 3 neurotoxicity and one patient died of septic shock. This high-dose regimen is toxic but nonetheless feasible in multicentre settings in non elderly patients with good performance status. A high response rate was obtained. Prolonged survival was mainly a function of salvage therapies.