985 resultados para human enhancement
Resumo:
The regulatory pathways involved in maintaining the pluripotency of embryonic stem cells are partially known, whereas the regulatory pathways governing adult stem cells and their "stem-ness" are characterized to an even lesser extent. We, therefore, screened the transcriptome profiles of 20 osteogenically induced adult human adipose-derived stem cell (ADSC) populations and investigated for putative transcription factors that could regulate the osteogenic differentiation of these ADSC. We studied a subgroup of donors' samples that had a disparate osteogenic response transcriptome from that of induced human fetal osteoblasts and the rest of the induced human ADSC samples. From our statistical analysis, we found activating transcription factor 5 (ATF5) to be significantly and consistently down-regulated in a randomized time-course study of osteogenically differentiated adipose-derived stem cells from human donor samples. Knockdown of ATF5 with siRNA showed an increased sensitivity to osteogenic induction. This evidence suggests a role for ATF5 in the regulation of osteogenic differentiation in adipose-derived stem cells. To our knowledge, this is the first report that indicates a novel role of transcription factors in regulating osteogenic differentiation in adult or tissue specific stem cells. © 2012 Wiley Periodicals, Inc.
Resumo:
Through the rise of cloud computing, on-demand applications, and business networks, services are increasingly being exposed and delivered on the Internet and through mobile communications. So far, services have mainly been described through technical interface descriptions. The description of business details, such as pricing, service-level, or licensing, has been neglected and is therefore hard to automatically process by service consumers. Also, third-party intermediaries, such as brokers, cloud providers, or channel partners, are interested in the business details in order to extend services and their delivery and, thus, further monetize services. In this paper, the constructivist design of the UnifiedServiceDescriptionLanguage (USDL), aimed at describing services across the human-to-automation continuum, is presented. The proposal of USDL follows well-defined requirements which are expressed against a common service discourse and synthesized from currently available servicedescription efforts. USDL's concepts and modules are evaluated for their support of the different requirements and use cases.
Resumo:
Objective: We hypothesize that chondrocytes from distinct zones of articular cartilage respond differently to compressive loading, and that zonal chondrocytes from osteoarthritis (OA) patients can benefit from optimized compressive stimulation. Therefore, we aimed to determine the transcriptional response of superficial (S) and middle/deep (MD) zone chondrocytes to varying dynamic compressive strain and loading duration. To confirm effects of compressive stimulation on overall matrix production, we subjected zonal chondrocytes to compression for 2 weeks. Design: Human S and MD chondrocytes from osteoarthritic joints were encapsulated in 2% alginate, pre-cultured, and subjected to compression with varying dynamic strain (5, 15, 50% at 1 Hz) and loading duration (1, 3, 12 h). Temporal changes in cartilage-specific, zonal, and dedifferentiation genes following compression were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). The benefits of long-term compression (50% strain, 3 h/day, for 2 weeks) were assessed by measuring construct glycosaminoglycan (GAG) content and compressive moduli, as well as immunostaining. Results: Compressive stimulation significantly induced aggrecan (ACAN), COL2A1, COL1A1, proteoglycan 4 (PRG4), and COL10A1 gene expression after 2 h of unloading, in a zone-dependent manner (P < 0.05). ACAN and PRG4 mRNA levels depended on strain and load duration, with 50% and 3 h loading resulting in highest levels (P < 0.05). Long-term compression increased collagen type II and ACAN immunostaining and total GAG (P < 0.05), but only S constructs showed more PRG4 stain, retained more GAG (P < 0.01), and developed higher compressive moduli than non-loaded controls. Conclusions: The biosynthetic activity of zonal chondrocytes from osteoarthritis joints can be enhanced with selected compression regimes, indicating the potential for cartilage tissue engineering applications. © 2012 Osteoarthritis Research Society International.
Resumo:
Background Late stage Ovarian Cancer is essentially incurable primarily due to late diagnosis and its inherent heterogeneity. Single agent treatments are inadequate and generally lead to severe side effects at therapeutic doses. It is crucial to develop clinically relevant novel combination regimens involving synergistic modalities that target a wider repertoire of cells and lead to lowered individual doses. Stemming from this premise, this is the first report of two- and three-way synergies between Adenovirus-mediated Purine Nucleoside Phosphorylase based gene directed enzyme prodrug therapy (PNP-GDEPT), docetaxel and/or carboplatin in multidrug-resistant ovarian cancer cells. Methods The effects of PNP-GDEPT on different cellular processes were determined using Shotgun Proteomics analyses. The in vitro cell growth inhibition in differentially treated drug resistant human ovarian cancer cell lines was established using a cell-viability assay. The extent of synergy, additivity, or antagonism between treatments was evaluated using CalcuSyn statistical analyses. The involvement of apoptosis and implicated proteins in effects of different treatments was established using flow cytometry based detection of M30 (an early marker of apoptosis), cell cycle analyses and finally western blot based analyses. Results Efficacy of the trimodal treatment was significantly greater than that achieved with bimodal- or individual treatments with potential for 10-50 fold dose reduction compared to that required for individual treatments. Of note was the marked enhancement in apoptosis that specifically accompanied the combinations that included PNP-GDEPT and accordingly correlated with a shift in the expression of anti- and pro-apoptotic proteins. PNP-GDEPT mediated enhancement of apoptosis was reinforced by cell cycle analyses. Proteomic analyses of PNP-GDEPT treated cells indicated a dowregulation of proteins involved in oncogenesis or cancer drug resistance in treated cells with accompanying upregulation of apoptotic- and tumour- suppressor proteins. Conclusion Inclusion of PNP-GDEPT in regular chemotherapy regimens can lead to significant enhancement of the cancer cell susceptibility to the combined treatment. Overall, these data will underpin the development of regimens that can benefit patients with late stage ovarian cancer leading to significantly improved efficacy and increased quality of life.
Resumo:
Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease