974 resultados para hot-air balloons
The health effects of temperature : current estimates, future projections, and adaptation strategies
Resumo:
Climate change is expected to be one of the biggest global health threats in the 21st century. In response to changes in climate and associated extreme events, public health adaptation has become imperative. This thesis examined several key issues in this emerging research field. The thesis aimed to identify the climate-health (particularly temperature-health) relationships, then develop quantitative models that can be used to project future health impacts of climate change, and therefore help formulate adaptation strategies for dealing with climate-related health risks and reducing vulnerability. The research questions addressed by this thesis were: (1) What are the barriers to public health adaptation to climate change? What are the research priorities in this emerging field? (2) What models and frameworks can be used to project future temperature-related mortality under different climate change scenarios? (3) What is the actual burden of temperature-related mortality? What are the impacts of climate change on future burden of disease? and (4) Can we develop public health adaptation strategies to manage the health effects of temperature in response to climate change? Using a literature review, I discussed how public health organisations should implement and manage the process of planned adaptation. This review showed that public health adaptation can operate at two levels: building adaptive capacity and implementing adaptation actions. However, there are constraints and barriers to adaptation arising from uncertainty, cost, technologic limits, institutional arrangements, deficits of social capital, and individual perception of risks. The opportunities for planning and implementing public health adaptation are reliant on effective strategies to overcome likely barriers. I proposed that high priorities should be given to multidisciplinary research on the assessment of potential health effects of climate change, projections of future health impacts under different climate and socio-economic scenarios, identification of health cobenefits of climate change policies, and evaluation of cost-effective public health adaptation options. Heat-related mortality is the most direct and highly-significant potential climate change impact on human health. I thus conducted a systematic review of research and methods for projecting future heat-related mortality under different climate change scenarios. The review showed that climate change is likely to result in a substantial increase in heatrelated mortality. Projecting heat-related mortality requires understanding of historical temperature-mortality relationships, and consideration of future changes in climate, population and acclimatisation. Further research is needed to provide a stronger theoretical framework for mortality projections, including a better understanding of socioeconomic development, adaptation strategies, land-use patterns, air pollution and mortality displacement. Most previous studies were designed to examine temperature-related excess deaths or mortality risks. However, if most temperature-related deaths occur in the very elderly who had only a short life expectancy, then the burden of temperature on mortality would have less public health importance. To guide policy decisions and resource allocation, it is desirable to know the actual burden of temperature-related mortality. To achieve this, I used years of life lost to provide a new measure of health effects of temperature. I conducted a time-series analysis to estimate years of life lost associated with changes in season and temperature in Brisbane, Australia. I also projected the future temperaturerelated years of life lost attributable to climate change. This study showed that the association between temperature and years of life lost was U-shaped, with increased years of life lost on cold and hot days. The temperature-related years of life lost will worsen greatly if future climate change goes beyond a 2 °C increase and without any adaptation to higher temperatures. The excess mortality during prolonged extreme temperatures is often greater than the predicted using smoothed temperature-mortality association. This is because sustained period of extreme temperatures produce an extra effect beyond that predicted by daily temperatures. To better estimate the burden of extreme temperatures, I estimated their effects on years of life lost due to cardiovascular disease using data from Brisbane, Australia. The results showed that the association between daily mean temperature and years of life lost due to cardiovascular disease was U-shaped, with the lowest years of life lost at 24 °C (the 75th percentile of daily mean temperature in Brisbane), rising progressively as temperatures become hotter or colder. There were significant added effects of heat waves, but no added effects of cold spells. Finally, public health adaptation to hot weather is necessary and pressing. I discussed how to manage the health effects of temperature, especially with the context of climate change. Strategies to minimise the health effects of high temperatures and climate change can fall into two categories: reducing the heat exposure and managing the health effects of high temperatures. However, policy decisions need information on specific adaptations, together with their expected costs and benefits. Therefore, more research is needed to evaluate cost-effective adaptation options. In summary, this thesis adds to the large body of literature on the impacts of temperature and climate change on human health. It improves our understanding of the temperaturehealth relationship, and how this relationship will change as temperatures increase. Although the research is limited to one city, which restricts the generalisability of the findings, the methods and approaches developed in this thesis will be useful to other researchers studying temperature-health relationships and climate change impacts. The results may be helpful for decision-makers who develop public health adaptation strategies to minimise the health effects of extreme temperatures and climate change.
Resumo:
Motor vehicles emit large quantities of ions in the form of both charged particles and molecular cluster ions. While, the health effects of inhalation of charged particles is largely unexplored, the concentrations near busy roads and the distance to which these particles and ions are carried have important implications for the exposure of the large percentage of the population that lives close to such roadways. We measured ion concentrations using a neutral cluster and air ion spectrometer (NAIS) near seven busy roads carrying on the average approximately 7000 vehicles hr-1 including about 15% heavy duty diesel vehicles. In this study, charged particle concentrations were measured as a function of downwind distance from the road for the first time. We show that, at a moderate wind speed of 2.0 m s-1, mean charged particle concentrations at the kerb were of the order of 2x104 cm-3 and, more importantly, decreased as d 0.6 where d is the distance from the road. While cluster ions were rapidly depleted by attachment to particles and were not carried to more than about 20 m from the road, elevated concentrations of charged particle were detected up to at least 400 m from the road. Most of the charge on the downwind side was carried on the larger particles, with no excess charge on particles smaller than about 10 nm. At 30 nm, particles carried more than double the charge they would normally carry in equilibrium. There are very few measurements of ions near road traffic and this is the first study of the spatial dispersion of charged particles from a road.
Resumo:
The effects of suspension parameters and driving conditions on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer are investigated in this study. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspensions is formulated based on fluid mechanics and thermodynamics and validated through test results. The effects of road surface conditions, driving speeds, air line inside diameter and connector inside diameter on dynamic load-sharing capability of the semi-trailer were analyzed in terms of load-sharing criteria. Simulation results indicate that, when larger air lines and connectors are employed, the DLSC (Dynamic Load-Sharing Coefficient) optimization ratio reaches its peak value when the road roughness is medium. The optimization ratio fluctuates in a complex manner as driving speed increases. The results also indicate that if the air line inside diameter is always assumed to be larger than the connector inside diameter, the influence of air line inside diameter on load-sharing is more significant than that of the connector inside diameter. The proposed approach can be used for further study of the influence of additional factors (such as vehicle load, static absolute air pressure and static height of air spring) on load-sharing and the control methods for multi-axle air suspensions with longitudinal air line.
Resumo:
Diesel particulate matter (DPM), in particular, has been likened in a somewhat inflammatory manner to be the ‘next asbestos’. From the business change perspective, there are three areas holding the industry back from fully engaging with the issue: 1. There is no real feedback loop in any operational sense to assess the impact of investment or application of controls to manage diesel emissions. 2. DPM are getting ever smaller and more numerous, but there is no practical way of measuring them to regulate them in the field. Mass, the current basis of regulation, is becoming less and less relevant. 3. Diesel emissions management is generally wholly viewed as a cost, yet there are significant areas of benefit available from good management. This paper discusses a feedback approach to address these three areas to move the industry forward. The six main areas of benefit from providing a feedback loop by continuously monitoring diesel emissions have been identified: 1. Condition-based maintenance. Emissions change instantaneously if engine condition changes. 2. Operator performance. An operator can use a lot more fuel for little incremental work output through poor technique or discipline. 3. Vehicle utilisation. Operating hours achieved and ratios of idling to under power affect the proportion of emissions produced with no economic value. 4. Fuel efficiency. This allows visibility into other contributing configuration and environmental factors for the vehicle. 5. Emission rates. This allows scope to directly address the required ratio of ventilation to diesel emissions. 6. Total carbon emissions - for NGER-type reporting requirements, calculating the emissions individually from each vehicle rather than just reporting on fuel delivered to a site.
Resumo:
This paper provides details on comparative testing of axle-to-chassis forces of two heavy vehicles (HVs) based on an experimental programme carried out in 2007. Dynamic forces at the air springs were measured against speed and roughness values for the test roads used. One goal of that programme was to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents a portion of the methodology, analysis and results from that programme. Two analytical techniques and their results are presented. The first uses correlation coefficients of the forces between air springs and the second is a student’s t-test. These were used to determine the causality surrounding improved dynamic load sharing between heavy vehicle air springs with larger air lines installed longitudinally compared with the standard sized air lines installed on the majority of air-sprung heavy vehicles.
Resumo:
Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length have a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.
Resumo:
Objectives Actigraphy can reliably assess sleep in healthy adults and be used to estimate total sleep time in suspected obstructive sleep apnoea (OSA) patients. We compared sleep quality for Continuous Positive Air Pressure (CPAP) treated OSA patients and controls, evaluating the impact of stopping CPAP for one night. Methods 11 men, aged 51–75 years (m = 65.6 years), compliant CPAP users, treated for 1–19 years (m = 7.8 years) wore Cambridge Neurotechnology Ltd actiwatches for one night while using CPAP and for one night sleeping without CPAP. A control group of 11 healthy men, aged 63–74 years (m = 64.1 years) slept normally whilst wearing an actiwatch. Subsequent daytime sleepiness was recorded using Karolinska sleepiness scores (KSS). Results Actimetry showed no significant differences between actual sleep time, sleep efficiency, sleep disturbance index or number of wake bouts when comparing OSA participants using CPAP, with controls; there was no difference in subsequent daytime sleepiness, control KSS = 4.21, OSA KSS = 4.17. Without CPAP there was no significant difference in sleep length or sleep onset latency compared with using CPAP, but there was a significant impact on sleep quality as shown by: increased sleep disturbance index from 7.9 to 13.8 [t(10) = 3.510, P < 0.05], decreased percent of actual sleep from 92.05% to 86.15% [t(10) = 3.51, P < 0.05], decreased sleep efficiency from 86.6% to 81% [t(10) = 2.204, P < 0.05] and increased number of wake bouts from 29 to 42.5 [t(10) = 3.877, P < 0.05]. Daytime sleepiness became significantly worse increasing from KSS 4.17 to 6.27 [t(10) = )4.96, P < 0.05]. Conclusion There was no disparity in sleep quality or KSS scores between CPAP treated OSA patients and healthy controls of a similar age. Treated OSA patients obtained quality sleep with no elevated day time sleepiness. However, cessation of treatment for one night caused sleep quality to deteriorate despite a comparable sleep time; the deterioration in sleep quality could explain the increase in daytime sleepiness. OSA patients need to know that even short-term noncompliance with CPAP treatment significantly impairs sleep quality, leading to excessive sleepiness during monotonous tasks such as driving. Actigraphy successfully identified nights of non-compliance in treated OSA patients; but did not differentiate between the sleep of CPAP treated OSA patients and healthy controls.
Resumo:
Objectives Heatwaves can have significant health consequences resulting in increased mortality and morbidity. However, their impact on people living in tropical/subtropical regions remains largely unknown. This study assessed the impact of heatwaves on mortality and emergency hospital admissions (EHAs) from non-external causes (NEC) in Brisbane, a subtropical city in Australia. Methods We acquired daily data on weather, air pollution and EHAs for patients aged 15 years and over in Brisbane between January 1996 and December 2005, and on mortality between January 1996 and November 2004. A locally derived definition of heatwave (daily maximum ≥37°C for 2 or more consecutive days) was adopted. Case–crossover analyses were used to assess the impact of heatwaves on cause-specific mortality and EHAs. Results During heatwaves, there was a statistically significant increase in NEC mortality (OR 1.46; 95% CI 1.21 to 1.77), cardiovascular mortality (OR 1.89; 95% CI 1.44 to 2.48), diabetes mortality in those aged 75+ (OR 9.96; 95% CI 1.02 to 96.85), NEC EHAs (OR 1.15; 95% CI 1.07 to 1.23) and EHAs from renal diseases (OR 1.41; 95% CI 1.09 to 1.83). The elderly were found to be particularly vulnerable to heatwaves (eg, for NEC EHAs, OR 1.24 for 65–74-year-olds and 1.39 for those aged 75+). Conclusions Significant increases in NEC mortality and EHAs were observed during heatwaves in Brisbane where people are well accustomed to hot summer weather. The most vulnerable were the elderly and people with cardiovascular, renal or diabetic disease.
Resumo:
Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature.
Resumo:
Da Nang Airbase in Viet Nam served as a bulk storage and supply facility for Agent Orange and other herbicides during Operation Ranch Hand 1961-1971[1]. Studies have shown that environmental and biological samples taken around the airbase site have elevated levels of dioxin [1-3]. Residents living in the vicinity of the airbase are at risk of exposure to dioxin in soil, water and mud and particularly through the consumption of local contaminated food. In 2009, a pre-intervention cross sectional survey was undertaken. This survey examined the knowledge, attitudes and practices (KAP) of householders living near Da Nang Airbase, relevent to reducing dioxin exposure through contaminated food. The results showed that despite living near a severe dioxin hot spot, the residents had very limited knowledge of both exposure risk and measures to reduce exposure to dioxin[4]. In response, the Vietnam Public Health Association (VPHA) and Da Nang Public Health Association implemented a risk reduction program at four residential wards in the vicinities of the Da Nang Airbase in 2010. A post intervention KAP survey was under taken in 2011, and the results showed that knowledge of the existence of dioxin in food, dioxin exposure pathways, potential high risk foods, and preventive measures was significantly enhanced. This new study monitored KAP 2.5 years after the intervention through a 2013 survey of food handlers from 400 households that were randomly selected from the four intervention wards. The results show that most of the positive outcomes remained stable or had increased; some KAP indicators decreased compared to those in the post-intervention survey, but were still significantly higher than the pre-intervention levels. In 2014, these findings will be incorporated with qualitative assessments and the results of laboratory analysis of dioxin concentrations in foods in Da Nang and Bien Hoa dioxin hot spots to comprehensively assess the sustained effects of the intervention.
Resumo:
INTRODUCTION Dengue fever (DF) in Vietnam remains a serious emerging arboviral disease, which generates significant concerns among international health authorities. Incidence rates of DF have increased significantly during the last few years in many provinces and cities, especially Hanoi. The purpose of this study was to detect DF hot spots and identify the disease dynamics dispersion of DF over the period between 2004 and 2009 in Hanoi, Vietnam. METHODS Daily data on DF cases and population data for each postcode area of Hanoi between January 1998 and December 2009 were obtained from the Hanoi Center for Preventive Health and the General Statistic Office of Vietnam. Moran's I statistic was used to assess the spatial autocorrelation of reported DF. Spatial scan statistics and logistic regression were used to identify space-time clusters and dispersion of DF. RESULTS The study revealed a clear trend of geographic expansion of DF transmission in Hanoi through the study periods (OR 1.17, 95% CI 1.02-1.34). The spatial scan statistics showed that 6/14 (42.9%) districts in Hanoi had significant cluster patterns, which lasted 29 days and were limited to a radius of 1,000 m. The study also demonstrated that most DF cases occurred between June and November, during which the rainfall and temperatures are highest. CONCLUSIONS There is evidence for the existence of statistically significant clusters of DF in Hanoi, and that the geographical distribution of DF has expanded over recent years. This finding provides a foundation for further investigation into the social and environmental factors responsible for changing disease patterns, and provides data to inform program planning for DF control.
Resumo:
‘Carbon trading fraudsters may have accounted for up to 90% of all market activity in some European countries, with criminals pocketing billions, mainly in Britain, France, Spain, Denmark and Holland, according to Europol and the European law enforcement agency.’ (Mason, 2009). ‘Carbon offset projects often result in land grabs, local environmental and social conflicts, as well as the repression of local communities and movements. The CDM approval process for projects allows little space for the voices of Indigenous Peoples and local communities – in fact, no project has ever been rejected on the grounds of rights violations, despite these being widespread’. (Carbon Trade Watch, 2013)
Resumo:
The aim of this work is to develop a demand-side-response model, which assists electricity consumers exposed to the market price to independently and proactively manage air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimize the energy cost caused by the air conditioning load considering to several cases e.g. normal price, spike price, and the probability of a price spike case. This model also investigated how air-conditioning applies a pre-cooling method when there is a substantial risk of a price spike. The results indicate the potential of the scheme to achieve financial benefits for consumers and target the best economic performance for electrical generation distribution and transmission. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics regarding hot days from 2011 to 2012.
Resumo:
Background Children are particularly vulnerable to the effects of extreme temperatures. Objective To examine the relationship between extreme temperatures and paediatric emergency department admissions (EDAs) in Brisbane, Australia, during 2003–2009. Methods A quasi-Poisson generalised linear model combined with a distributed lag non-linear model was used to examine the relationships between extreme temperatures and age-, gender- and cause-specific paediatric EDAs, while controlling for air pollution, relative humidity, day of the week, influenza epidemics, public holiday, season and long-term trends. The model residuals were checked to identify whether there was an added effect due to heat waves or cold spells. Results There were 131 249 EDAs among children during the study period. Both high (RR=1.27; 95% CI 1.12 to 1.44) and low (RR=1.81; 95% CI 1.66 to 1.97) temperatures were significantly associated with an increase in paediatric EDAs in Brisbane. Male children were more vulnerable to temperature effects. Children aged 0–4 years were more vulnerable to heat effects and children aged 10–14 years were more sensitive to both hot and cold effects. High temperatures had a significant impact on several paediatric diseases, including intestinal infectious diseases, respiratory diseases, endocrine, nutritional and metabolic diseases, nervous system diseases and chronic lower respiratory diseases. Low temperatures were significantly associated with intestinal infectious diseases, respiratory diseases and endocrine, nutritional and metabolic diseases. An added effect of heat waves on childhood chronic lower respiratory diseases was seen, but no added effect of cold spells was found. Conclusions As climate change continues, children are at particular risk of a variety of diseases which might be triggered by extremely high temperatures. This study suggests that preventing the effects of extreme temperature on children with respiratory diseases might reduce the number of EDAs.