941 resultados para histone H2A variant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We cloned cDNA encoding chicken cytoplasmic histone acetyltransferase-1, chHAT-1, comprising 408 amino acids including a putative initiation Met. It exhibits 80.4% identity to the human homolog and possesses a typical leucine zipper motif. The glutathione S-transferase (GST) pull-down assay, involving truncated and missense mutants of the chicken chromatin assembly factor-1 (chCAF-1)p48, revealed not only that a region (comprising amino acids 376–405 of chCAF-1p48 and containing the seventh WD dipeptide motif) binds to chHAT-1 in vitro, but also that mutation of the motif has no influence on the in vitro interaction. The GST pull-down assay, involving truncated and missense chHAT-1 mutants, established that a region, comprising amino acids 380–408 of chHAT-1 and containing the leucine zipper motif, is required for its in vitro interaction with chCAF-1p48. In addition, mutation of each of four Leu residues in the leucine zipper motif prevents the in vitro interaction. The yeast two-hybrid assay revealed that all four Leu residues within the leucine zipper motif of chHAT-1 are necessary for its in vivo interaction with chCAF-1p48. These results indicate not only that the proper leucine zipper motif of chHAT-1 is essential for its interaction with chCAF-1p48, but also that the propeller structure of chCAF-1p48 expected to act as a platform for protein–protein interactions may not be necessary for this interaction of chHAT-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between Cajal bodies (CBs) and replication-dependent histone loci occur more frequently than for other mRNA-encoding genes, but such interactions are not seen with all alleles at a given time. Because CBs contain factors required for transcriptional regulation and 3′ end processing of nonpolyadenylated replication-dependent histone transcripts, we investigated whether interaction with CBs is related to metabolism of these transcripts, known to vary during the cell cycle. Our experiments revealed that a locus containing a cell cycle-independent, replacement histone gene that produces polyadenylated transcripts does not preferentially associate with CBs. Furthermore, modest but significant changes in association levels of CBs with replication-dependent histone loci mimic their cell cycle modulations in transcription and 3′ end processing rates. By simultaneously visualizing replication-dependent histone genes and their nuclear transcripts for the first time, we surprisingly find that the vast majority of loci producing detectable RNA foci do not contact CBs. These studies suggest some link between CB association and unusual features of replication-dependent histone gene expression. However, sustained CB contact is not a requirement for their expression, consistent with our observations of U7 snRNP distributions. The modest correlation to gene expression instead may reflect transient gene signaling or the nucleation of small CBs at gene loci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that the Myc and Mad1 proteins are implicated in the regulation of the gene encoding the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. We have analyzed the in vivo interaction between endogenous c-Myc and Mad1 proteins and the hTERT promoter in HL60 cells with the use of the chromatin immunoprecipitation assay. The E-boxes at the hTERT proximal promoter were occupied in vivo by c-Myc in exponentially proliferating HL60 cells but not in cells induced to differentiate by DMSO. In contrast, Mad1 protein was induced and bound to the hTERT promoter in differentiated HL60 cells. Concomitantly, the acetylation of the histones at the promoter was significantly reduced. These data suggest that the reciprocal E-box occupancy by c-Myc and Mad1 is responsible for activation and repression of the hTERT gene in proliferating and differentiated HL60 cells, respectively. Furthermore, the histone deacetylase inhibitor trichostatin A inhibited deacetylation of histones at the hTERT promoter and attenuated the repression of hTERT transcription during HL60 cell differentiation. In addition, trichostatin A treatment activated hTERT transcription in resting human lymphocytes and fibroblasts. Taken together, these results indicate that acetylation/deacetylation of histones is operative in the regulation of hTERT expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis CBF transcriptional activators bind to the CRT/DRE regulatory element present in the promoters of many cold-regulated genes and stimulate their transcription. Expression of the CBF1 proteins in yeast activates reporter genes carrying a minimal promoter with the CRT/DRE as an upstream regulatory element. Here we report that this ability of CBF1 is dependent upon the activities of three key components of the yeast Ada and SAGA complexes, namely the histone acetyltransferase (HAT) Gcn5 and the transcriptional adaptor proteins Ada2 and Ada3. This result suggested that CBF1 might function through the action of similar complexes in Arabidopsis. In support of this hypothesis we found that Arabidopsis has a homolog of the GCN5 gene and two homologs of ADA2, the first report of multiple ADA2 genes in an organism. The Arabidopsis GCN5 protein has intrinsic HAT activity and can physically interact in vitro with both the Arabidopsis ADA2a and ADA2b proteins. In addition, the CBF1 transcriptional activator can interact with the Arabidopsis GCN5 and ADA2 proteins. We conclude that Arabidopsis encodes HAT-containing adaptor complexes that are related to the Ada and SAGA complexes of yeast and propose that the CBF1 transcriptional activator functions through the action of one or more of these complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylase HDA1, the prototype for the class II mammalian deacetylases, is likely the catalytic subunit of the HDA1-containing complex that is involved in TUP1-specific repression and global deacetylation in yeast. Although the class I RPD3-like enzymatic complexes have been well characterized, little is known about the identity and interactions of the factors that associate to form the HDA1 complex. In this paper, we identify related HDA2 and HDA3 proteins that are found in the HDA1 complex and show that HDA1 interacts with itself and with the HDA2-HDA3 subcomplex to form a likely tetramer. These interactions are necessary for catalytic activity because mutations in any of the three components disrupt activity both in vitro and in vivo. In this respect the HDA1 complex differs from yeast RPD3, which has components such as SIN3 that are not essential for activity in vitro, and yeast HOS3, which has intrinsic in vitro activity as a homodimer in the absence of other subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common chronic human genetic disorder whose hallmark is systemic iron overload. Homozygosity for a mutation in the MHC class I heavy chain paralogue gene HFE has been found to be a primary cause of HH. However, many individuals homozygous for the defective allele of HFE do not develop iron overload, raising the possibility that genetic variation in modifier loci contributes to the HH phenotype. Mice deficient in the product of the β2-microglobulin (β2M) class I light chain fail to express HFE and other MHC class I family proteins, and they have been found to manifest many characteristics of the HH phenotype. To determine whether natural genetic variation plays a role in controlling iron overload, we performed classical genetic analysis of the iron-loading phenotype in β2M-deficient mice in the context of different genetic backgrounds. Strain background was found to be a major determinant in iron loading. Sex played a role that was less than that of strain background but still significant. Resistance and susceptibility to iron overload segregated as complex genetic traits in F1 and back-cross progeny. These results suggest the existence of naturally variant autosomal and Y chromosome-linked modifier loci that, in the context of mice genetically predisposed by virtue of a β2M deficiency, can profoundly influence the severity of iron loading. These results thus provide a genetic explanation for some of the variability of the HH phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within chromatin, the core histone tail domains play critical roles in regulating the structure and accessibility of nucleosomal DNA within the chromatin fiber. Thus, many nuclear processes are facilitated by concomitant posttranslational modification of these domains. However, elucidation of the mechanisms by which the tails mediate such processes awaits definition of tail interactions within chromatin. In this study we have investigated the primary DNA target of the majority of the tails in mononucleosomes. The results clearly show that the tails bind preferentially to “linker” DNA, outside of the DNA encompassed by the nucleosome core. These results have important implications for models of tail function within the chromatin fiber and for in vitro structural and functional studies using nucleosome core particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a yeast model system to address transcriptional repression by the retinoblastoma protein (pRB). When fused to the DNA-binding domain of Gal4p (DB-pRB), pRB can repress transcription of reporter genes containing Gal4p binding sites; the histone deacetylase activity encoded by yeast RPD3 is required for DB-pRB repression. Mutation of the LXCXE binding cleft in pRB, a region reported to be required for histone deacetylase recruitment, does not interfere with pRB-mediated repression. From these findings based on yeast experiments, we surmise that the small pocket region of pRB must contain an additional domain that confers histone deacetylase-dependent transcriptional repression. This hypothesis was verified by experiments examining pRB-dependent histone deacetylase association in mammalian cells. In addition to RPD3, repression by pRB in yeast requires MSI1, an ortholog of RbAp48, but not SIN3 or SAP30. By comparing the genetic requirements of DB-pRB repression in yeast to those of other DB-repressor fusions, we can suggest a mechanism by which pRB recruits histone deacetylase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblasts derived from embryos homozygous for a disruption of the retinoblastoma gene (Rb) exhibit a shorter G1 than their wild-type counterparts, apparently due to highly elevated levels of cyclin E protein and deregulated cyclin-dependent kinase 2 (CDK2) activity. Here we demonstrate that the Rb-/- fibroblasts display higher levels of phosphorylated H1 throughout G1 with the maximum being 10-fold higher than that of the Rb+/+ fibroblasts. This profile of intracellular H1 phosphorylation corresponds with deregulated CDK2 activity observed in in vitro assays, suggesting that CDK2 may be directly responsible for the in vivo phosphorylation of H1. H1 phosphorylation has been proposed to lead to a relaxation of chromatin structure due to a decreased affinity of this protein for chromatin after phosphorylation. In accord with this, chromatin from the Rb-/- cells is more susceptible to micrococcal nuclease digestion than that from Rb+/+ fibroblasts. Increased H1 phosphorylation and relaxed chromatin structure have also been observed in cells expressing several oncogenes, suggesting a common mechanism in oncogene and tumor suppressor gene function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse mammary tumor virus (MMTV) promoter is regulated by steroid hormones through a hormone-responsive region that is organized in a positioned nucleosome. Hormone induction leads to a structural change of this nucleosome which makes its DNA more sensitive to cleavage by DNase I and enables simultaneous binding of all relevant transcription factors. In cells carrying either episomal or chromosomally integrated MMTV promoters, moderate acetylation of core histones, generated by treatment with low concentrations of the histone deacetylase inhibitors sodium butyrate or trichostatin A, enhances transcription from the MMTV promoter in the absence of hormone and potentiates transactivation by either glucocorticoids or progestins. At higher concentrations, histone deacetylase inhibitors reduce basal and hormone induced MMTV transcription. Inducing inhibitor concentrations lead to the same type of nucleosomal DNase I hypersensitivity as hormone treatment, suggesting that moderate acetylation of core histone activates the MMTV promoter by mechanisms involving chromatin remodeling similar to that generated by the inducing hormones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone H1, a major structural component of chromatin fiber, is believed to act as a general repressor of transcription. To investigate in vivo the role of this protein in transcription regulation during development of a multicellular organism, we made transgenic tobacco plants that overexpress the gene for Arabidopsis histone H1. In all plants that overexpressed H1 the total H1-to-DNA ratio in chromatin increased 2.3-2.8 times compared with the physiological level. This was accompanied by 50-100% decrease of native tobacco H1. The phenotypic changes in H1-overexpressing plants ranged from mild to severe perturbations in morphological appearance and flowering. No correlation was observed between the extent of phenotypic change and the variation in the amount of overexpressed H1 or the presence or absence of the native tobacco H1. However, the severe phenotypic changes were correlated with early occurrence during plant growth of cells with abnormally heterochromatinized nuclei. Such cells occurred considerably later in plants with milder changes. Surprisingly, the ability of cells with highly heterochromatinized nuclei to fulfill basic physiological functions, including differentiation, was not markedly hampered. The results support the suggestion that chromatin structural changes dependent on H1 stoichiometry and on the profile of major H1 variants have limited regulatory effect on the activity of genes that control basal cellular functions. However, the H1-mediated chromatin changes can be of much greater importance for the regulation of genes involved in control of specific developmental programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the ability of the histone (H3-H4)2 tetramer, the central part of the nucleosome of eukaryotic chromatin, to form particles on DNA minicircles of negative and positive superhelicities, and the effect of relaxing these particles with topoisomerase I. The results show that even modest positive torsional stress from the DNA, and in particular that generated by DNA thermal fluctuations, can trigger a major, reversible change in the conformation of the particle. Neither a large excess of naked DNA, nor a crosslink between the two H3s prevented the transition from one form to the other. This suggested that during the transition, the histones neither dissociated from the DNA nor were even significantly reshuffled. Moreover, the particles reconstituted on negatively and positively supercoiled minicircles look similar under electron microscopy. These data agree best with a transition involving a switch of the wrapped DNA from a left- to a right-handed superhelix. It is further proposed, based on the left-handed overall superhelical conformation of the tetramer within the octamer [Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E. N. (1991) Proc. Natl.Acad. Sci. USA 88, 10148-10152] that this change in DNA topology is mediated by a similar change in the topology of the tetramer itself, which may occur through a rotation (or a localized deformation) of the two H3-H4 dimers about their H3-H3 interface. Potential implications of this model for nucleosome dynamics in vivo are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silver-haired bat variant of rabies virus (SHBRV) has been identified as the etiological agent of a number of recent human rabies cases in the United States that are unusual in not having been associated with any known history of conventional exposure. Comparison of the different biological and biochemical properties of isolates of this virus with those of a coyote street rabies virus (COSRV) revealed that there are unique features associated with SHBRV. In vitro studies showed that, while the susceptibility of neuroblastoma cells to infection by both viruses was similar, the infectivity of SHBRV was much higher than that of COSRV in fibroblasts (BHK-21) and epithelial cells (MA-104), particularly when these cells were kept at 34 degrees C. At this temperature, low pH-dependent fusion and cell-to-cell spread of virus is seen in BHK-21 cells infected with SHBRV but not with COSRV. It appears that SHBRV may possess an unique cellular tropism and the ability to replicate at lower temperature, allowing a more effective local replication in the dermis. This hypothesis is supported by in vivo results which showed that while SHBRV is less neurovirulent than COSRV when administered via the intramuscular or intranasal routes, both viruses are equally neuroinvasive if injected intracranially or intradermally. Consistent with the above findings, the amino acid sequences of the glycoproteins of SHBRV and COSRV were found to have substantial differences, particularly in the region that contains the putative toxic loop, which are reflected in marked differences in their antigenic composition. Nevertheless, an experimental rabies vaccine based on the Pittman Moore vaccine strain protected mice equally well from lethal doses of SHBRV and COSRV, suggesting that currently used vaccines should be effective in the postexposure prophylaxis of rabies due to SHBRV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasite-derived proteins expressed on the surface of erythrocytes infected with Plasmodium falciparum are important virulence factors, since they mediate binding of infected cells to diverse receptors on vascular endothelium and are targets of a protective immune response. They are difficult to study because they undergo rapid clonal antigenic variation in vitro, which precludes the derivation of phenotypically homogeneous cultures. Here we have utilized sequence-specific proteases to dissect the role of defined antigenic variants in binding to particular receptors. By selection of protease-resistant subpopulations of parasites on defined receptors we (i) confirm the high rate of antigenic variation in vitro; (ii) demonstrate that a single infected erythrocyte can bind to intercellular adhesion molecule 1, CD36, and thrombospondin; (iii) show that binding to intercellular adhesion molecule 1 and CD36 are functions of the variant antigen; and (iv) suggest that binding to thrombospondin may be mediated by other components of the infected erythrocyte surface.