785 resultados para high-intensity exercise
Resumo:
The propagation of a 1-ps laser pulse at intensities exceeding 10(19) Wcm(-2) in a low-density plasma channel was experimentally tested. The channel was produced by a lower intensity preceding pulse of the same duration. Plasma electrons were accelerated during the propagation of the main pulse, and high energy gamma -ray detectors were used to detect their bremsstrahlung emission. The gamma -ray yield was studied for different channel conditions, by varying the delay between the channel forming pulse and the high intensity pulse. These results are correlated with the interferograms of the propagation region into the plasma.
Resumo:
The use of schemes involving multiple laser pulses to enhance and control the properties of beams of protons accelerated in ultra-intense laser irradiation of planar foil targets is discussed. Specifically, the schemes include the use of a second laser pulse to produce and control preplasma expansion of the target to enhance energy coupling to the proton beam; the use of a second laser pulse to drive shock deformation of the target to change the direction of the proton beam; and a scheme involving dual high intensity laser pulses to change the properties of the sheath field, with the aim of modifying the proton energy spectrum. An overview of our recent experimental and theoretical results is given. The overall aim of this work is to determine the extent to which the properties of the sheath-accelerated proton beam can be optically controlled, to enable beam delivery at high repetition rates. To cite this article: D.C. Carroll et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
As a diagnostic of high-intensity laser interactions (> 10(19) W cm(-2)), the detection of radioactive isotopes is regularly used for the characterization of proton, neutron, ion, and photon beams. This involves sample removal from the interaction chamber and time consuming post shot analysis using NaI coincidence counting or Ge detectors. This letter describes the use of in situ detectors to measure laser-driven (p,n) reactions in Al-27 as an almost real-time diagnostic for proton acceleration. The produced Si-27 isotope decays with a 4.16 s half-life by the predominantly beta+ emission, producing a strong 511 keV annihilation peak. (c) 2006 American Institute of Physics.
Resumo:
We report the first systematic observations of relativistic self-phase-modulation (RSPM) due to the interaction of a high intensity laser pulse with plasma. The plasma was produced in front of a solid target by the prepulse of a 100 TW laser beam. RSPM was observed by monitoring the spectrum of the harmonics generated by the intense laser pulse during the interaction. The multipeaked broadened spectral structure produced by RSPM was studied in plasmas with different density scale lengths for laser interactions at intensities up to 3.0x1019 W cm(-2) (a=p(osc)/m(e)c=4.7). The results are compared with calculated spectra and agreement is obtained.
Resumo:
The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated. (C) 2002 American Institute of Physics.
Resumo:
Nuclear activation has been observed in materials exposed to the ablated plasma generated from high intensity laser-solid interactions (at focused intensities up to 2x10(19) W/cm(2)) and is produced by protons having energies up to 30 MeV. The energy spectrum of the protons is determined from these activation measurements and is found to be consistent with other ion diagnostics. The possible development of this technique for
Resumo:
We present measurements of the transverse and longitudinal coherence lengths of the fourth harmonic of a 1053-nm, 2.5-ps laser generated during high-intensity (up to 10(19) W cm(-2)) interactions with a solid target. Coherence lengths were measured by use of a Young's double-slit interferometer. The effective source size, as defined by the Van Cittert-Zernicke theorem, was found to be 10-12 mu m, and the coherence time was observed to be in the range 0.02-0.4 ps.
Resumo:
The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterized with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.
Resumo:
The development of current instabilities behind the front of a cylindrically expanding plasma has been investigated experimentally via proton probing techniques. A multitude of tubelike filamentary structures is observed to form behind the front of a plasma created by irradiating solid-density wire targets with a high-intensity (I~1019??W/cm2), picosecond-duration laser pulse. These filaments exhibit a remarkable degree of stability, persisting for several tens of picoseconds, and appear to be magnetized over a filament length corresponding to several filament radii. Particle-in-cell simulations indicate that their formation can be attributed to a Weibel instability driven by a thermal anisotropy of the electron population. We suggest that these results may have implications in astrophysical scenarios, particularly concerning the problem of the generation of strong, spatially extended and sustained magnetic fields in astrophysical jets.
Resumo:
The interaction of a high-intensity laser pulse with a plasma density channel preformed in a gas jet target has been studied. At neutral densities below 3.0 X 10(19) cm(-3) a strong interaction between the pulse and the channel walls was observed, there was clear evidence of pulse confinement, and the laser irradiance was significantly increased compared to an interaction with neutral gas. At higher gas densities, however, the radial uniformity and length of the channel were both found to be adversely affected by refractive defocusing of the prepulse used to generate the channel.
Resumo:
Varying intensities of nurse-mediated health education advice were administered to subjects over a three-month period. Mean serum total cholesterol was calculated for each group at the outset and completion of the study. A multidimensional health locus of control (MHLC) scales questionnaire was self-completed by subjects at the outset. A highly significant association between internality and reduction in serum total cholesterol in the high-intensity intervention group was observed. The completion of a MHLC scale questionnaire may assist health professionals in identifying which subjects may most benefit from high-intensity health education advice when raised serum total cholesterol is prevalent.
Resumo:
Proton bursts with a narrow spectrum at an energy of (2.8 +/- 0.3 MeV) are accelerated from sub-micron water spray droplets irradiated by high-intensity (similar to 5 x 10(19)W/cm(2)), high-contrast (similar to 10(10)), ultra-short (40 fs) laser pulses. The acceleration is preferentially in the laser propagation direction. The explosion dynamics is governed by a residual ps-scale laser pulse pedestal which "mildly" preheats the droplet and changes its density profile before the arrival of the high intensity laser pulse peak. As a result, the energetic electrons extracted from the modified target by the high-intensity part of the laser pulse establish an anisotropic electrostatic field which results in anisotropic Coulomb explosion and proton acceleration predominantly in the forward direction. Hydrodynamic simulations of the target pre-expansion and 3D particle-in-cell simulations of the measured energy and anisotropy of the proton emission have confirmed the proposed acceleration scenario. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731712]
Resumo:
Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter.
Resumo:
Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10 4 times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure.
Resumo:
Ion acceleration driven by high intensity laser pulses is attracting an impressive and steadily increasing research effort. Experiments over the past 10-15 years have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties, which have stimulated interest in a number of innovative applications. While most of this work has been based on sheath acceleration processes, where space-charge fields are established by relativistic electrons at surfaces of the irradiated target, a number of novel mechanisms has been the focus of recent theoretical and experimental activities. This paper will provide a brief review of the state of the art in the field of laser-driven ion acceleration, with particular attention to recent developments.