811 resultados para hierarchical clustering
Resumo:
This study considers the function and complexity of tasks during foraging of three Acromyrmex species. Foraging was classified as a team task composed of 2 or 3 processes: recruitment, selection, and collection. Each process was subdivided into different subtasks. Points were attributed to subtasks considering their hierarchical level to compare the complexity of foraging among species. Total scores obtained were 19 for A. balzani and 14 for A. crassispinus and A. rugosus, indicating different degrees of social complexity for grass-cutting and leaf-cutting ant species. Acromyrmex balzani, a grass-cutting ant species, shows a behavioral repertoire composed of more variable subtasks during foraging.
Resumo:
The genetic divergence in 20 Eucalyptus spp. clones was evaluated by multivariate techniques based on 167 RAPD markers, of which 155 were polymorphic and 12 monomorphic. The measures of genetic distances were obtained by the arithmetic complement of the coefficients of Jaccard and of Sorenso-Nei and Li and evaluated by the hierarchical methods of Single Linkage clustering and Unweighted Pair Group Method with Arithmetic Mean (UPGMA). Independent of the dissimilarity coefficient, the greatest divergence was found between clones 7 and 17 and the smallest between the clones 11 and 14. Clone clustering was little influenced by the applied procedure so that, adopting the same percentage of divergence, the UPGMA identified two groups less for the coefficient of Sorenso-Nei and Li. The clones evidenced considerable genetic divergence, which is partly associated to the origin of the study material. The clusters formed by the UPGMA clustering algorithm associated to the arithmetic complement of Jaccard were most consistent.
Resumo:
Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.
Resumo:
Land use classification has been paramount in the last years, since we can identify illegal land use and also to monitor deforesting areas. Although one can find several research works in the literature that address this problem, we propose here the land use recognition by means of Optimum-Path Forest Clustering (OPF), which has never been applied to this context up to date. Experiments among Optimum-Path Forest, Mean Shift and K-Means demonstrated the robustness of OPF for automatic land use classification of images obtained by CBERS-2B and Ikonos-2 satellites. © 2011 IEEE.
Resumo:
The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE.
Resumo:
The post-processing of association rules is a difficult task, since a large number of patterns can be obtained. Many approaches have been developed to overcome this problem, as objective measures and clustering, which are respectively used to: (i) highlight the potentially interesting knowledge in domain; (ii) structure the domain, organizing the rules in groups that contain, somehow, similar knowledge. However, objective measures don't reduce nor organize the collection of rules, making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, making the search for relevant knowledge not so easy. This work proposes the PAR-COM (Post-processing Association Rules with Clustering and Objective Measures) methodology that, combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. Thereby, PAR-COM minimizes the user's effort during the post-processing process.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.
Resumo:
Wireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. © 2012 IEEE.
Resumo:
Although association mining has been highlighted in the last years, the huge number of rules that are generated hamper its use. To overcome this problem, many post-processing approaches were suggested, such as clustering, which organizes the rules in groups that contain, somehow, similar knowledge. Nevertheless, clustering can aid the user only if good descriptors be associated with each group. This is a relevant issue, since the labels will provide to the user a view of the topics to be explored, helping to guide its search. This is interesting, for example, when the user doesn't have, a priori, an idea where to start. Thus, the analysis of different labeling methods for association rule clustering is important. Considering the exposed arguments, this paper analyzes some labeling methods through two measures that are proposed. One of them, Precision, measures how much the methods can find labels that represent as accurately as possible the rules contained in its group and Repetition Frequency determines how the labels are distributed along the clusters. As a result, it was possible to identify the methods and the domain organizations with the best performances that can be applied in clusters of association rules.
Resumo:
In this paper we propose a nature-inspired approach that can boost the Optimum-Path Forest (OPF) clustering algorithm by optimizing its parameters in a discrete lattice. The experiments in two public datasets have shown that the proposed algorithm can achieve similar parameters' values compared to the exhaustive search. Although, the proposed technique is faster than the traditional one, being interesting for intrusion detection in large scale traffic networks. © 2012 IEEE.
Resumo:
Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation. © 2012 IEEE.
Resumo:
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.
Resumo:
The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high-performance p-type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin-like, fiber-like, and nanorods), are prepared by a microwave-assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X-ray powder diffraction, nitrogen adsorption isotherms, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin-like structures is found to be most effective for hydrogen detection in the range of parts-per-million at 200 °C with 300-fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p-type semiconductors. High-performance gas sensors based on CuO hierarchical morphologies with in situ gas sensor comparison are reported. Urchin-like morphologies with high hydrogen sensitivity and selectivity that show chemical and thermal stability and low temperature operation are analyzed. The role of morphological influences in p-type gas sensor materials is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Many topics related to association mining have received attention in the research community, especially the ones focused on the discovery of interesting knowledge. A promising approach, related to this topic, is the application of clustering in the pre-processing step to aid the user to find the relevant associative patterns of the domain. In this paper, we propose nine metrics to support the evaluation of this kind of approach. The metrics are important since they provide criteria to: (a) analyze the methodologies, (b) identify their positive and negative aspects, (c) carry out comparisons among them and, therefore, (d) help the users to select the most suitable solution for their problems. Some experiments were done in order to present how the metrics can be used and their usefulness. © 2013 Springer-Verlag GmbH.