949 resultados para germin-like protein
Resumo:
Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing to be dependent of concentration and solvent used. Treatment with air saturated with methanol was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570-720%), water vapour transmission rate (1083 g/m2/day) and mechanical properties (modulus of elasticity of ~126 MPa). Furthermore, the methanol-treated SELP fiber mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fiber mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications.
Resumo:
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Resumo:
The principal topic of this work is the application of data mining techniques, in particular of machine learning, to the discovery of knowledge in a protein database. In the first chapter a general background is presented. Namely, in section 1.1 we overview the methodology of a Data Mining project and its main algorithms. In section 1.2 an introduction to the proteins and its supporting file formats is outlined. This chapter is concluded with section 1.3 which defines that main problem we pretend to address with this work: determine if an amino acid is exposed or buried in a protein, in a discrete way (i.e.: not continuous), for five exposition levels: 2%, 10%, 20%, 25% and 30%. In the second chapter, following closely the CRISP-DM methodology, whole the process of construction the database that supported this work is presented. Namely, it is described the process of loading data from the Protein Data Bank, DSSP and SCOP. Then an initial data exploration is performed and a simple prediction model (baseline) of the relative solvent accessibility of an amino acid is introduced. It is also introduced the Data Mining Table Creator, a program developed to produce the data mining tables required for this problem. In the third chapter the results obtained are analyzed with statistical significance tests. Initially the several used classifiers (Neural Networks, C5.0, CART and Chaid) are compared and it is concluded that C5.0 is the most suitable for the problem at stake. It is also compared the influence of parameters like the amino acid information level, the amino acid window size and the SCOP class type in the accuracy of the predictive models. The fourth chapter starts with a brief revision of the literature about amino acid relative solvent accessibility. Then, we overview the main results achieved and finally discuss about possible future work. The fifth and last chapter consists of appendices. Appendix A has the schema of the database that supported this thesis. Appendix B has a set of tables with additional information. Appendix C describes the software provided in the DVD accompanying this thesis that allows the reconstruction of the present work.
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Systems Biology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
A 73 year-old white male, living in the interior of the state of Mato Grosso do Sul, in central Brazil, after an initial diagnosis of sinusitis was transferred to the neurology service with a 3-day evolution of intracranial hypertension. Exams showed lymphocytic leukemia and a tumor-like lesion, either an expanding inflammatory process such as an abscess or a neoplasm. Treatment with Ceftriaxone and Decadron was started and intracranial hypertension was controlled. Methotrexate was injected on the occasion of the next puncture considering a possible leukemia infiltration. Flagellate forms of T. cruzi were observed in the CSF and treatment with Benznidazole was started. After 4 days the CSF presented fractionated forms of trypomastigotes. The protein level was 27%. Signs of intracranial hypertension ceased. Tomography and magnetic resonance images showed an important reduction of the tumor-like lesion. The clinical condition of the patient improved.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
Since October 2001, the Adolfo Lutz Institute has been receiving vesicular fluids and scab specimens of patients from Paraíba Valley region in the São Paulo and Minas Gerais States and from São Patricio Valley, in the Goiás State. Epidemiological data suggested that the outbreaks were caused by Cowpox virus or Vaccinia virus. Most of the patients are dairy milkers that had vesiculo-pustular lesions on the hands, arms, forearms, and some of them, on the face. Virus particles with orthopoxvirus morphology were detected by direct electron microscopy (DEM) in samples of 49 (66.21%) patients of a total of 74 analyzed. Viruses were isolated in Vero cell culture and on chorioallantoic membrane (CAM) of embryonated chicken eggs. Among 21 samples submitted to PCR using primers for hemagglutinin (HA) gene, 19 were positive. Restriction digestion with TaqI resulted in four characteristic Vaccinia virus fragments. HA nucleotide sequences showed 99.9% similarity with Cantagalo virus, described as a strain of Vaccinia virus. The only difference observed was the substitution of one nucleotide in the position 616 leading to change in one amino acid of the protein in the position 206. The phylogenetic analysis showed that the isolates clustered together with Cantagalo virus, other Vaccinia strains and Rabbitpox virus.
Resumo:
Rett syndrome is a genetic neurodevelopmental disorder that affects mainly girls, but mutations in the causative MECP2 gene have also been identified in boys with classic Rett syndrome and Rett syndrome-like phenotypes. We have studied a group of 28 boys with a neurodevelopmental disorder, 13 of which with a Rett syndrome-like phenotype; the patients had diverse clinical presentations that included perturbations of the autistic spectrum, microcephaly, mental retardation, manual stereotypies, and epilepsy. We analyzed the complete coding region of the MECP2 gene, including the detection of large rearrangements, and we did not detect any pathogenic mutations in the MECP2 gene in these patients, in whom the genetic basis of disease remained unidentified. Thus, additional genes should be screened in this group of patients.
Resumo:
Dissertação para obtenção do Grau de Mestre em Bioquímica Estrutural e Funcional
Resumo:
The effects of high and low-protein diets on the structure of the jejunal mucosa were studied in Schistosoma mansoni infected mice (morphology and histomorphometry). Weaning male albino mice were infected with 80 cercariae, fed with high (20%) or low-protein (5%) diets and compared to uninfected controls under the same conditions. Mice were sacrificed 12 weeks after infection. Animals submitted to a low-protein diet showed lower weight curves, mainly when infected. In the jejunal mucosa, finger-like villi were the predominant pattern among uninfected high-protein fed animals, while the infected ones showed leaf-shaped and flattened villi in most cases. Undernourished infected mice had 65.7% leaf-shaped villi. A significant increase in the number of goblet cells was seen in infected mice. A decrease in the number of absorptive cells was detected in undernourished mice, particularly in infected ones.
Resumo:
Many viruses have developed numerous strategies to recruit and take advantage of cellular protein degradation pathways to evade the cellular viral immune system. One such virus is the Kaposi´s Sarcoma associated herpesvirus (KSHV), first discovered in Kaposi´s Sarcoma lesions found in AIDS patients. Latency-Associated Nuclear Antigen (LANA) is a KSHV multifunctional protein responsible for tethering viral DNA to the chromosome ensuring maintenance and segregation of the viral genome during cell division. Besides its main role of viral maintenance, LANA also physically interacts with several host proteins to modulate cell functions. One such function is to recruit the EC5S ubiquitin-ligase complex by interacting with Elongin BC complex and Cullin 5 protein, which in turn ubiquitinate substrates such as NF-κB and p53 to allow persistent viral infection. Like any other post-translation modifications, ubiquitination is reversible through deubiquitination enzymes (DUBs). LANA also interacts with ubiquitin specific protease 7 (USP7), a deubiquitination enzyme involved in regulation of several proteins including p53. Interaction with USP7 is made through a conserved peptide motif, which is also present in LANA. This work addresses the role of LANA in the recruitment and modulation of the ubiquitination and deubiquitination pathways. Despite the continued efforts in uncovering new LANA interacting partners to form a functional EC5S ubiquitin-ligase complex, only MHV-68 LANA interacted directly with Elongin BC, other interactions were not direct and may require a linker protein. On the other hand, LANA interaction with USP7 was able to be analysed by X-ray structure determination. In addition to a conserved P/AxxS motif, a novel Glutamine (Gln) residue from KSHV LANA was shown to make a specific interaction with USP7. This Gln residue is also present in other herpesvirus protein and hence it might be a conserved motif within herpesviruses.
Resumo:
In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts and filamentous fungi was observed. The antimicrobial activity of CM4-A200 was dependent on the physical contact of cells with the film surface. Furthermore, CM4-A200 films did not reveal a cytotoxic effect against both normal human skin fibroblasts and human keratinocytes. Finally, we have developed an optimized ex vivo assay with pig skin demonstrating the antimicrobial properties of the CM4-A200 cast films for skin applications.