995 resultados para genetic gains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noise can be defined as unwanted sound. It may adversely affect the health and well-being of individuals. Noise sensitivity is a personality trait covering attitudes towards noise in general and a predictor of noise annoyance. Noise sensitive individuals are more affected by noise than less sensitive individuals. The determinants and characteristics related to noise sensitivity are rather poorly known. The risk of health effects caused by noise can be hypothesized to be higher for noise sensitive individuals compared to those who are not noise sensitive. A cardiovascular disease may be an example of outcomes. The general aim of the present study was to investigate the association of noise sensitivity with specific somatic and psychological factors, including the genetic component of noise sensitivity, and the association of noise sensitivity with mortality. The study was based on the Finnish Twin Cohort of same-sex twin pairs born before 1958. In 1988 a questionnaire was sent to twin pairs discordant for hypertension. 1495 individuals (688 men, 807 women) aged 31 88 years replied, including 573 twin pairs. 218 of the subjects lived in the Helsinki Metropolitan Area. Self-reported noise sensitivity, lifetime noise exposure and hypertension were obtained from the questionnaire study in 1988 and other somatic and psychological factors from the questionnaire study in 1981 for the same individuals. In addition, noise map information (1988 1992) from the Helsinki Metropolitan Area and mortality follow-up 1989 2003 were used. To evaluate the stability and validity of noise sensitivity, a new questionnaire was sent in 2002 to a sample of the subjects who had replied to the 1988 questionnaire. Of all subjects who had answered the question on noise sensitivity, 38 % were noise sensitive. Noise sensitivity was independent of noise exposure levels indicated in noise maps. Subjects with high noise sensitivity reported more transportation noise exposure than subjects with low noise sensitivity. Noise sensitive subjects reported transportation noise exposure outside the environmental noise map areas almost twice as often as non-sensitive subjects. Noise sensitivity was associated with hypertension, emphysema, use of psychotropic drugs, smoking, stress and hostility, even when lifetime noise exposure was adjusted for. Monozygotic twin pairs were more similar with regards noise sensitivity than dizygotic twin pairs, and quantitative genetic modelling indicated significant familiality. The best fitting genetic model provided an estimate of heritability of 36 %. Follow-up of subjects in the case-control study showed that cardiovascular mortality was significantly increased among noise sensitive women, but not among men. For coronary heart mortality the interaction of noise sensitivity and lifetime noise exposure was statistically significant in women. In conclusion, noise sensitivity has both somatic and psychological components. It does aggregate in families and probably has a genetic component. Noise sensitivity may be a risk factor for cardiovascular mortality in women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root-lesion nematodes (Pratylenchus thornei and P. neglectus) cause severe economic loss in wheat in Australia. This project aims to develop adaptaed wheat lines with resistance and tolerance to both species. These lines will be made available to Australian wheat breeding companies for further crossing and development of resistant and tolerant wheat varieties. Sources of resistance will be synthetic hexaploid and landrace wheats from the Middle East. Suitable double haploid populations will be phenotyped for the development of molecular markers to resistance and tolerance genes. The value of resistance and tolerance will be extended to growers through collaboration in demonstration trials with NGA and ORANA and presentations at GRDC Updates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity increases the risk for several conditions, including type 2 diabetes mellitus, cardiovascular disease, hypertension, osteoarthirits and certain types of cancer. Twin- and family studies have shown that there is a major genetic component in the determination of body mass. In recent years several technological and scientific advance have been made in obesity research. For instance, novel replicated loci have been revealed by a number of genome wide association studies. This thesis aimed to investigate the association of genetic factors and obesity-related quantitative traits. The first study investigated the role of the lactase gene in anthropometric traits. We genetically defined lactose persistence by genotyping 31 720 individuals of European descent. We found that lactase persistence was significantly correlated with weight and body mass index but not with height. In the second study we performed the largest whole genome linkage scan for body mass index to date. The sample consisted of 4401 twin families and 10 535 individuals from six European countries. We found supporting evidence for two loci (3q29 and 7q36). We observed that the heritability estimate increased substantially when additional family members were removed from the analyses, which suggests reduced environmental variance in the twin sample. In the third study we assessed metabonomic, transcriptomic and genomic variation in a Finnish population cohort of 518 individuals. We formed gene expression networks to portray pathways and showed that a set of highly correlated genes of an inflammatory pathway associated with 80 serum metabolites (of 134 quantified measures). Strong association was found, for example, with several lipoprotein subclasses. We inferred causality by using genetic variation as anchors. The expression of the network genes was found to be dependent on the circulatory metabolite concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of approximately 2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 x 10(-8) to P = 4 x 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium. S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin. Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr)gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec(SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci. The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland. The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and 1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains. Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person. Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species. Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past years, much research on sarcomas based on low-resolution cytogenetic and molecular cytogenetic methods has been published, leading to the identification of genetic abnormalities partially underlying the tumourigenesis. Continued progress in the identification of genetic events such as copy number aberrations relies upon adapting the rapidly evolving high-resolution microarray technology, which will eventually provide novel insights into sarcoma biology, and targets for both diagnostics and drug development. The aim of this Thesis was to characterize DNA copy number changes that are involved in the pathogenesis of soft tissue leiomyosarcoma (LMS), dermatofibrosarcoma protuberans (DFSP), osteosarcoma (OS), malignant fibrous histiocytoma (MFH), and uterine leiomyosarcoma (ULMS) by applying fine resolution array comparative genomic hybridization (aCGH) technology. Both low- and high-grade LMS tumours showed distinct copy number patterns, in addition to sharing two minimal common regions of gains and losses. Small aberrations were detected by aCGH, which were beyond the resolution of chromosomal comparative genomic hybridization (cCGH). DFSP tumours analysed by aCGH showed gains in 17q, 22q, and 21 additional gained regions, but only one region (22q) with copy number loss. Recurrent amplicons identified in OS by aCGH were 12q11-q15, 8q, 6p12-p21, and 17p. Amplicons 12q and 17p were further characterized in detail. The amplicon at 17p was characterized by aCGH in low- and high-grade LMS, OS, and MFH. In all but one case this amplicon, with minimal common regions of gains at 17p11-p12, started with the distal loss of 17p13-pter. OS and high-grade LMS were grouped together as they showed a complex pattern of copy number gains and amplifications at 17p, whereas MFH and low-grade LMS showed a continuous pattern of copy number gains and amplification at 17p. In addition to the commonly gained and lost regions identified in ULMS by aCGH, various biological processes affected by these copy number changes were also indicated by pathway analysis. The three novel findings obtained in this work were: characterization of amplicon 17p in low- and high-grade LMS and MFH, profiles of DNA copy number changes in LMS, and detection of various pathways affected by copy number changes in ULMS. These studies have not been undertaken previously by aCGH technology, thus this Thesis adds new information regarding DNA copy number changes in sarcomas. In conclusion, the aCGH technique used in this Thesis has provided new insights into the genetics of sarcomas by detecting the precise regions affected by copy number changes and some potential candidate target genes within those regions, which had not been uncovered by previously applied low resolution techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between major depressive disorder (MDD) and bipolar disorder (BD) remains controversial. Previous research has reported differences and similarities in risk factors for MDD and BD, such as predisposing personality traits. For example, high neuroticism is related to both disorders, whereas openness to experience is specific for BD. This study examined the genetic association between personality and MDD and BD by applying polygenic scores for neuroticism, extraversion, openness to experience, agreeableness and conscientiousness to both disorders. Polygenic scores reflect the weighted sum of multiple single-nucleotide polymorphism alleles associated with the trait for an individual and were based on a meta-analysis of genome-wide association studies for personality traits including 13,835 subjects. Polygenic scores were tested for MDD in the combined Genetic Association Information Network (GAIN-MDD) and MDD2000+ samples (N=8921) and for BD in the combined Systematic Treatment Enhancement Program for Bipolar Disorder and Wellcome Trust Case-Control Consortium samples (N=6329) using logistic regression analyses. At the phenotypic level, personality dimensions were associated with MDD and BD. Polygenic neuroticism scores were significantly positively associated with MDD, whereas polygenic extraversion scores were significantly positively associated with BD. The explained variance of MDD and BD, approximately 0.1%, was highly comparable to the variance explained by the polygenic personality scores in the corresponding personality traits themselves (between 0.1 and 0.4%). This indicates that the proportions of variance explained in mood disorders are at the upper limit of what could have been expected. This study suggests shared genetic risk factors for neuroticism and MDD on the one hand and for extraversion and BD on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.