958 resultados para galaxies: dwarf


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2 455 335.92050 ± 0.00074 (HJD) and the transit duration is 4.663 h. Methods: WASP-38b's discovery was enabled due to an upgrade to the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 ± 80 K, log g = 4.3 ± 0.1, v sin i = 8.6 ± 0.4 km s-1, M_* = 1.16 ± 0.04 M? and R_* = 1.33 ± 0.03 R?, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. Results: The planet has a mass of 2.69 ± 0.06 MJup and a radius of 1.09 ± 0.03 RJup giving a density, ?p = 2.1 ± 0.1 ?J. The high precision of the eccentricity e = 0.0314 ± 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 ± 33 K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V = 9.4 mag), is a good candidate for followup atmospheric studies. Photometry and RV data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A54

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an m v = 12.7 G2-type dwarf, with a period of 3.577469 ± 0.000011 d, transit epoch T 0 = 2455338.6188 ± 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304+0.0018 –0.0017 d. The planetary companion has a mass M p = 1.80 ± 0.17 M J and radius R p = 1.16+0.07 –0.06 R J, yielding a mean density of 1.15+0.12 –0.15 ?J. From a spectral analysis, we find that the host star has M sstarf = 0.925 ± 0.120 M sun, R sstarf = 1.003 ± 0.053 R sun, T eff = 5800 ± 150 K, and [Fe/H] = –0.40 ± 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The location of the red edge of the ZZ Ceti instability strip is defined observationally as being the lowest temperature for which a white dwarf with a H-rich atmosphere (DA) is known to exhibit periodic brightness variations. Whether this cut-off in flux variations is actually due to a cessation of pulsation or merely due to the attenuation of any variations by the convection zone, rendering them invisible, is not clear. The latter is a theoretical possibility because with decreasing effective temperature, the emergent flux variations become an ever smaller fraction of the amplitude of the flux variations in the interior. In contrast to the flux variations, the visibility of the velocity variations associated with the pulsations is not thought to be similarly affected. Thus, models imply that were it still pulsating, a white dwarf just below the observed red edge should show velocity variations. In order to test this possibility, we used time-resolved spectra of three DA white dwarfs that do not show photometric variability, but which have derived temperatures only slightly lower than the coolest ZZ Ceti variables. We find that none of our three targets show significant periodic velocity variations, and set 95% confidence limits on amplitudes of 3.0, 5.2, and 8.8 km s(-1). Thus, for two out of our three objects, we can rule out velocity variations as large as 5.4 km s(-1) observed for the strongest mode in the cool white dwarf pulsator ZZ Psc. In order to verify our procedures, we also examined similar data of a known ZZ Ceti, HL Tau 76. Applying external information from the light curve, we detect significant velocity variations for this object with amplitudes of up to 4 km s(-1). Our results suggest that substantial numbers of pulsators having large velocity amplitudes do not exist below the observed photometric red edge and that the latter probably reflects a real termination of pulsations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence of high-velocity features (HVFs) such as those seen in the near-maximum spectra of some Type Ia supernovae (SNe Ia; e. g., SN 2000cx) has been searched for in the available SN Ia spectra observed earlier than 1 week before B maximum. Recent observational efforts have doubled the number of SNe Ia with very early spectra. Remarkably, all SNe Ia with early data ( seven in our Research Training Network sample and 10 from other programs) show signs of such features, to a greater or lesser degree, in Ca II IR and some also in the Si II lambda 6355 line. HVFs may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material (CSM) by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disk and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in single degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion and would suggest a deflagration as the more likely explosion mechanism. CSM interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe, the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of the highest velocity ejecta of normal Type Ia supernovae (SNe Ia) are studied via models of very early optical spectra of six SNe. At epochs earlier than 1 week before maximum, SNe with a rapidly evolving Si II ?6355 line velocity (HVG) have a larger photospheric velocity than SNe with a slowly evolving Si II ?6355 line velocity (LVG). Since the two groups have comparable luminosities, the temperature at the photosphere is higher in LVG SNe. This explains the different overall spectral appearance of HVG and LVG SNe. However, the variation of the Ca II and Si II absorptions at the highest velocities (v>~20,000 km s-1) suggests that additional factors, such as asphericity or different abundances in the progenitor white dwarf, affect the outermost layers. The C II ?6578 line is marginally detected in three LVG SNe, suggesting that LVGs undergo less intense burning. The carbon mass fraction is small, only less than 0.01 near the photosphere, so that he mass of unburned C is only

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effects of varying the cosmic ray ionization rate in chemical models of dense interstellar clouds. In the absence of such ionization, a scenario which may be applicable to dark cloud cores, we find that chemi-ionization is able to drive a limited ion-neutral chemistry. Models of clouds in starburst galaxies, which may have enhanced cosmic ray fluxes, are also investigated and enable an upper limit to be derived for the cosmic ray ionization rate in M82. The derived value, which is about 700 times the typical value for Galactic molecular clouds, is in good agreement with that necessary to explain the recent observations of C I in this galaxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038±0.012). We find a planetary mass of 0.59±0.01 MJup and radius of 1.22-0.08+0.11 RJup. There is a linear trend in the radial velocities of 55±4 m s-1 y-1 indicating the presence of a long-period third body in the system with a mass ?0.45 MJup at a distance of ?1.2 AU from the host star. This third-body is either a low-mass star, a white dwarf, or another planet. The transit depth ((RP/Rstar)2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only 80%. Radial velocity and photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A130

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters' isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of ˜600 Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J-Ks colour and rotation period in the F, G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the ages of Hyades and Praesepe. In the case of the Hyades, our colour-period sequence extends well into the M dwarf regime and shows a steep increase in the scatter of the colour-period relation, with identification of numerous rapid rotators from ˜0.5 Msun down to the lowest masses probed by our survey (˜0.25 Msun). This provides crucial constraints on the rotational braking time-scales and further clears the way to use gyrochronology as an accurate age measurement tool for main-sequence stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the discovery of WASP-39b, a highly inflated transiting Saturn-mass planet orbiting a late G-type dwarf star with a period of 4.055259 +/- 0.000008 d, Transit Epoch T-0 = 2 455 342.9688 +/- 0.0002 (HJD), of duration 0.1168 +/- 0.0008 d. A combined analysis of the WASP photometry, high-precision follow-up transit photometry, and radial velocities yield a planetary mass of M-pl = 0.28 +/- 0.03 M-J and a radius of R-pl = 1.27 +/- 0.04 R-J, resulting in a mean density of 0.14 +/- 0.02 rho(J). The stellar parameters are mass M-star = 0.93 +/- 0.03 M-circle dot, radius R-star = 0.895 +/- 0.23 R-circle dot, and age 9(-4)(+3) Gyr. Only WASP-17b and WASP-31b have lower densities than WASP-39b, although they are slightly more massive and highly irradiated planets. From our spectral analysis, the metallicity of WASP-39 is measured to be [Fe/H] = -0.12 +/- 0.1 dex, and we find the planet to have an equilibrium temperature of 1116(-32)(+33) K. Both values strengthen the observed empirical correlation between these parameters and the planetary radius for the known transiting Saturn-mass planets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M 1 = 0.92 ± 0.1 M sun, we find M 2 = 0.610 ± 0.036 M sun, R 1 = 0.932 ± 0.076 R sun, and R 2 = 0.559 ± 0.102 R sun, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M 1 = 1.163 ± 0.034 M sun, R 1 = 2.063 ± 0.058 R sun) and a G-type dwarf secondary (M 2 = 0.905 ± 0.067 M sun, R 2 = 0.887 ± 0.037 R sun). We provide the framework necessary to apply this analysis to much larger data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295 ± 0.0009 AU) around a moderately bright (V = 11.6, K = 10) G9 dwarf (0.89 ± 0.08 Msun, 0.84 ± 0.03 Rsun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50 b, are well constrained to 1.47 ± 0.09 MJup and 1.15 ± 0.05 RJup, respectively. The transit ephemeris is 2 455 558.6120 (±0.0002) + N × 1.955096 (±0.000005) HJDUTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'HK = -4.67) and rotational period (Prot = 16.3 ± 0.5 days) of the host star suggest an age of 0.8 ± 0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (?* = 1.48 ± 0.10 ?sun, Teff = 5400 ± 100 K, [Fe/H] = -0.12 ± 0.08) which favors an age of 7 ± 3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity. We measure a stellar inclination of 84-31+6 deg, disfavoring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50 b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars. The photometric time-series used in this work are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A88

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 +/- 1 M-circle dot from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above similar to 20 M-circle dot may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type H SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and these SNe pose a challenge to stellar evolutionary theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Roche tomograms of the secondary star in the dwarf nova system RU Pegasi derived from blue and red arm ISIS data taken on the 4.2-m William Herschel Telescope. We have applied the entropy landscape technique to determine the system parameters and obtained component masses of M1 = 1.06 Msun, M2 = 0.96 Msun, an orbital inclination angle of i = 43 degrees, and an optimal systemic velocity of gamma = 7 km/s. These are in good agreement with previously published values. Our Roche tomograms of the secondary star show prominent irradiation of the inner Lagrangian point due to illumination by the disc and/or bright spot, which may have been enhanced as RU Peg was in outburst at the time of our observations.We find that this irradiation pattern is axi-symmetric and confined to regions of the star which have a direct view of the accretion regions. This is in contrast to previous attempts to map RU Peg which suggested that the irradiation pattern was non-symmetric and extended beyond the terminator. We also detect additional inhomogeneities in the surface distribution of stellar atomic absorption that we ascribe to the presence of a large star-spot. This spot is centred at a latitude of about 82 degrees and covers approximately 4 per cent of the total surface area of the secondary. In keeping with the high latitude spots mapped on the cataclysmic variables AE Aqr and BV Cen, the spot on RU Peg also appears slightly shifted towards the trailing hemisphere of the star. Finally, we speculate that early mapping attempts which indicated non-symmetric irradiation patterns which extended beyond the terminator of CV donors could possibly be explained by a superposition of symmetric heating and a large spot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion(1-3). Unless the companion star is another white dwarf ( in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova(4,5) is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0 - G2 star, similar to our Sun in surface temperature and luminosity ( but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.