940 resultados para future energy scenario
Resumo:
In this report we will investigate the effect of negative energy density in a classic Friedmann cosmology. Although never measured and possibly unphysical, the evolution of a Universe containing a significant cosmological abundance of any of a number of hypothetical stable negative energy components is explored. These negative energy (Ω < 0) forms include negative phantom energy (w<-1), negative cosmological constant (w=-1), negative domain walls (w=-2/3), negative cosmic strings (w= -1/3), negative mass (w=0), negative radiation (w=1/3), and negative ultra-light (w > 1/3). Assuming that such universe components generate pressures as perfect fluids, the attractive or repulsive nature of each negative energy component is reviewed. The Friedmann equations can only be balanced when negative energies are coupled to a greater magnitude of positive energy or positive curvature, and minimal cases of both of these are reviewed. The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed including endings categorized as a Big Crunch, Big Void, or Big Rip and further qualified as "Warped", "Curved", or "Flat", "Hot" versus "Cold", "Accelerating" versus" Decelerating" versus "Coasting". A universe that ends by contracting to zero energy density is termed a Big Poof. Which contracting universes ``bounce" in expansion and which expanding universes ``turnover" into contraction are also reviewed. The name by which the ending of the Universe is mentioned is our own nomenclature.
Resumo:
Algae are considered a promising source of biofuels in the future. However, the environmental impact of algae-based fuel has high variability in previous LCA studies due to lack of accurate data from researchers and industry. The National Alliance for Advanced Biofuels and Bioproducts (NAABB) project was designed to produce and evaluate new technologies that can be implemented by the algal biofuel industry and establish the overall process sustainability. The MTU research group within NAABB worked on the environmental sustainability part of the consortium with UOP-Honeywell and with the University of Arizona (Dr. Paul Blowers). Several life cycle analysis (LCA) models were developed within the GREET Model and SimaPro 7.3 software to quantitatively assess the environment viability and sustainability of algal fuel processes. The baseline GREET Harmonized algae life cycle was expanded and replicated in SimaPro software, important differences in emission factors between GREET/E-Grid database and SimaPro/Ecoinvent database were compared, and adjustments were made to the SimaPro analyses. The results indicated that in most cases SimaPro has a higher emission penalty for inputs of electricity, chemicals, and other materials to the algae biofuels life cycle. A system-wide model of algae life cycle was made starting with preliminary data from the literature, and then progressed to detailed analyses based on inputs from all NAABB research areas, and finally several important scenarios in the algae life cycle were investigated as variations to the baseline scenario. Scenarios include conversion to jet fuel instead of biodiesel or renewable diesel, impacts of infrastructure for algae cultivation, co-product allocation methodology, and different usage of lipid-extracted algae (LEA). The infrastructure impact of algae cultivation is minimal compared to the overall life cycle. However, in the scenarios investigating LEA usage for animal feed instead of internal recycling for energy use and nutrient recovery the results reflect the high potential variability in LCA results. Calculated life cycle GHG values for biofuel production scenarios where LEA is used as animal feed ranged from a 55% reduction to 127% increase compared to the GREET baseline scenario depending on the choice of feed meal. Different allocation methods also affect LCA results significantly. Four novel harvesting technologies and two extraction technologies provided by the NAABB internal report have been analysis using SimaPro LCA software. The results indicated that a combination of acoustic extraction and acoustic harvesting technologies show the most promising result of all combinations to optimize the extraction of algae oil from algae. These scenario evaluations provide important insights for consideration when planning for the future of an algae-based biofuel industry.
Resumo:
ZnO has proven to be a multifunctional material with important nanotechnological applications. ZnO nanostructures can be grown in various forms such as nanowires, nanorods, nanobelts, nanocombs etc. In this work, ZnO nanostructures are grown in a double quartz tube configuration thermal Chemical Vapor Deposition (CVD) system. We focus on functionalized ZnO Nanostructures by controlling their structures and tuning their properties for various applications. The following topics have been investigated: 1. We have fabricated various ZnO nanostructures using a thermal CVD technique. The growth parameters were optimized and studied for different nanostructures. 2. We have studied the application of ZnO nanowires (ZnONWs) for field effect transistors (FETs). Unintentional n-type conductivity was observed in our FETs based on as-grown ZnO NWs. We have then shown for the first time that controlled incorporation of hydrogen into ZnO NWs can introduce p-type characters to the nanowires. We further found that the n-type behaviors remained, leading to the ambipolar behaviors of hydrogen incorporated ZnO NWs. Importantly, the detected p- and n- type behaviors are stable for longer than two years when devices were kept in ambient conditions. All these can be explained by an ab initio model of Zn vacancy-Hydrogen complexes, which can serve as the donor, acceptors, or green photoluminescence quencher, depend on the number of hydrogen atoms involved. 3. Next ZnONWs were tested for electron field emission. We focus on reducing the threshold field (Eth) of field emission from non-aligned ZnO NWs. As encouraged by our results on enhancing the conductivity of ZnO NWs by hydrogen annealing described in Chapter 3, we have studied the effect of hydrogen annealing for improving field emission behavior of our ZnO NWs. We found that optimally annealed ZnO NWs offered much lower threshold electric field and improved emission stability. We also studied field emission from ZnO NWs at moderate vacuum levels. We found that there exists a minimum Eth as we scale the threshold field with pressure. This behavior is explained by referring to Paschen’s law. 4. We have studied the application of ZnO nanostructures for solar energy harvesting. First, as-grown and (CdSe) ZnS QDs decorated ZnO NBs and ZnONWs were tested for photocurrent generation. All these nanostructures offered fast response time to solar radiation. The decoration of QDs decreases the stable current level produced by ZnONWs but increases that generated by NBs. It is possible that NBs offer more stable surfaces for the attachment of QDs. In addition, our results suggests that performance degradation of solar cells made by growing ZnO NWs on ITO is due to the increase in resistance of ITO after the high temperature growth process. Hydrogen annealing also improve the efficiency of the solar cells by decreasing the resistance of ITO. Due to the issues on ITO, we use Ni foil as the growth substrates. Performance of solar cells made by growing ZnO NWs on Ni foils degraded after Hydrogen annealing at both low (300 °C) and high (600 °C) temperatures since annealing passivates native defects in ZnONWs and thus reduce the absorption of visible spectra from our solar simulator. Decoration of QDs improves the efficiency of such solar cells by increasing absorption of light in the visible region. Using a better electrolyte than phosphate buffer solution (PBS) such as KI also improves the solar cell efficiency. 5. Finally, we have attempted p-type doping of ZnO NWs using various growth precursors including phosphorus pentoxide, sodium fluoride, and zinc fluoride. We have also attempted to create p-type carriers via introducing interstitial fluorine by annealing ZnO nanostructures in diluted fluorine gas. In brief, we are unable to reproduce the growth of reported p-type ZnO nanostructures. However; we have identified the window of temperature and duration of post-growth annealing of ZnO NWs in dilute fluorine gas which leads to suppression of native defects. This is the first experimental effort on post-growth annealing of ZnO NWs in dilute fluorine gas although this has been suggested by a recent theory for creating p-type semiconductors. In our experiments the defect band peak due to native defects is found to decrease by annealing at 300 °C for 10 – 30 minutes. One of the major future works will be to determine the type of charge carriers in our annealed ZnONWs.
Resumo:
BACKGROUND: Due to the predicted age shift of the population an increase in the number of patients with late AMD is expected. At present smoking represents the only modifiable risk factor. Supplementation of antioxidants in patients at risk is the sole effective pharmacological prevention. The aim of this study is to estimate the future epidemiological development of late AMD in Switzerland and to quantify the potential effects of smoking and antioxidants supplementation. METHODS: The modelling of the future development of late AMD cases in Switzerland was based on a meta-analysis of the published data on AMD-prevalence and on published Swiss population development scenarios until 2050. Three different scenarios were compared: low, mean and high. The late AMD cases caused by smoking were calculated using the "population attributable fraction" formula and data on the current smoking habits of the Swiss population. The number of potentially preventable cases was estimated using the data of the Age-Related Eye Disease Study (AREDS). RESULTS: According to the mean population development scenario, late AMD cases in Switzerland will rise from 37 200 cases in 2005 to 52 500 cases in 2020 and to 93 200 cases in 2050. Using the "low" and the "high" scenarios the late AMD cases may range from 49 500 to 56 000 in 2020 and from 73 700 to 118 400 in 2050, respectively. Smoking is responsible for approximately 7 % of all late AMD cases, i. e., 2600 cases in 2005, 3800 cases in 2020, 6600 cases in 2050 ("mean scenario"). With future antioxidant supplementation to all patients at risk another 3100 cases would be preventable until 2020 and possibly 23 500 cases until 2050. CONCLUSION: Due to age shift in the population a 2.5-fold increase in late AMD cases until 2050 is expected, representing a socioeconomic challenge. Cessation of smoking and supplementation of antioxidants to all patients at risk has the potential to reduce this number. Unfortunately, public awareness is low. These data may support health-care providers and public opinion leaders when developing public education and prevention strategies.
Resumo:
This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.
Resumo:
Following the rapid growth of China's economy, energy consumption, especially electricity consumption of China, has made a huge increase in the past 30 years. Since China has been using coal as the major energy source to produce electricity during these years, environmental problems have become more and more serious. The research question for this paper is: "Can China use alternative energies instead of coal to produce more electricity in 2030?" Hydro power, nuclear power, natural gas, wind power and solar power are considered as the possible and most popular alternative energies for the current situation of China. To answer the research question above, there are two things to know: How much is the total electricity consumption in China by 2030? And how much electricity can the alternative energies provide in China by 2030? For a more reliable forecast, an econometric model using the Ordinary Least Squares Method is established on this paper to predict the total electricity consumption by 2030. The predicted electricity coming from alternative energy sources by 2030 in China can be calculated from the existing literature. The research results of this paper are analyzed under a reference scenario and a max tech scenario. In the reference scenario, the combination of the alternative energies can provide 47.71% of the total electricity consumption by 2030. In the max tech scenario, it provides 57.96% of the total electricity consumption by 2030. These results are important not only because they indicate the government's long term goal is reachable, but also implies that the natural environment of China could have an inspiring future.
Resumo:
Der Umbau der durch den Einsatz fossiler Energieträger dominierten Energiesysteme steht weit oben auf der politischen Agenda. Angesichts des fortschreitenden Klimawandels, der Ressourcenverknappung und des ökonomischen Aufholens der Schwellen- und Entwicklungsländer wird diese Frage immer dringlicher. Zahlreiche politische, gesellschaftliche, ökonomische und ökologische Herausforderungen sind mit diesem Umbau verbunden. Angesichts der Langlebigkeit der heute gebauten Infrastrukturen ergibt sich hieraus ein zentrales Feld für die wissenschaftliche Zukunftsforschung. Der Einsatz von Energieszenarios ist über Jahre erprobt und trotz zahlreicher methodischer und inhaltlicher Unsicherheiten bei der Erarbeitung der Szenariostudien bleiben sie unersetzlich – sofern sie wissenschaftliche Standards hinsichtlich der Wertneutralität und Überprüfbarkeit erfüllen. Auch in der geographischen Forschung findet sich das Thema „Energie“ wieder verstärkt auf der Agenda. Bereits vor dem Hintergrund der Ölpreiskrisen in den 1970er-Jahren setzten sich Geographinnen und Geographen mit Energiethemen auseinander – angesichts des anstehenden Umbaus der Energiesysteme wird auch wieder die Frage aktuell, inwiefern sich die Transformation des Energiesystems und die Raumstruktur gegenseitig beeinflussen. Dabei werden nicht nur inhaltliche Fragen aufgeworfen, vielmehr ist auch zu klären, wie sich das Thema „Energie“ in die etablierten geographischen Forschungsdisziplinen von der Klimageographie über die Wirtschafts- und Bevölkerungsgeographie bis hin zur Siedlungsgeographie eingliedern lässt. Die Ausführungen im vorliegenden Artikel gehen noch einen Schritt weiter und werfen die Frage auf, inwiefern sich durch die Verbindung geographischer Forschung und Energiethemen auch ein neues methodisches Experimentierfeld auftut. Konkret wird aufgezeigt, dass die Geographie verstärkt den Blick in die Zukunft wagen und sich von der Analyse rezenter Strukturen lösen sollte. Die Frage der zukünftigen Raumstrukturen angesichts des Umbaus der Energiesysteme ist von zentraler Bedeutung, unter Anwendung von Methoden der wissenschaftlichen Zukunftsforschung muss die Geographie hier antworten liefern.
Resumo:
Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.
Resumo:
The flood seasonality of catchments in Switzerland is likely to change under climate change because of anticipated alterations of precipitation as well as snow accumulation and melt. Information on this change is crucial for flood protection policies, for example, or regional flood frequency analysis. We analysed projected changes in mean annual and maximum floods of a 22-year period for 189 catchments in Switzerland and two scenario periods in the 21st century based on an ensemble of climate scenarios. The flood seasonality was analysed with directional statistics that allow assessing both changes in the mean date a flood occurs as well as changes in the strength of the seasonality. We found that the simulated change in flood seasonality is a function of the change in flow regime type. If snow accumulation and melt is important in a catchment during the control period, then the anticipated change in flood seasonality is most pronounced. Decreasing summer precipitation in the scenarios additionally affects the flood seasonality (mean date of flood occurrence) and leads to a decreasing strength of seasonality, that is a higher temporal variability in most cases. The magnitudes of mean annual floods and more clearly of maximum floods (in a 22-year period) are expected to increase in the future because of changes in flood-generating processes and scaled extreme precipitation. Southern alpine catchments show a different signal, though: the simulated mean annual floods decrease in the far future, that is at the end of the 21st century. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
In this paper we address energy efficiency issues of Information Centric Networking (ICN) architectures. In the proposed framework, we investigate the impact of ICN architectures on energy consumption of networking hardware devices and compare them with the energy consumption of other content dissemination methods. In particular, we investigate the consequences of caching in ICN from the energy efficiency perspective, taking into account the energy consumption of different hardware components in the ICN architectures. Based on the results of the analysis, we address the practical issues regarding the possible deployment and evolution of ICN from an energy-efficiency perspective. Finally, we summarize our findings and discuss the outlook/future perspectives on the energy efficiency of Information-Centric Networks.
Resumo:
We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.
Resumo:
Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.
Resumo:
A complex of interrelated factors including minority status, poverty, education, health status, and other factors determine the general welfare of children in America, particularly in heavily diverse states such as Texas. Although racial/ethnic status is clearly only a concomitant factor in that determination it is a factor for which future projections are available and for which the relationships with the other factors in the complex can be assessed. After examining the nature of the interrelationships between these factors we utilize direct standardization techniques to examine how the future diversification of the United States and Texas will affect the number of children in poverty, the educational status of the householders in households in which children in poverty live and the health status of children in 2040 assuming that the current relationships between minority status and these socioeconomic factors continue into the future. In the results of the analyses, data are compared with the total population of the United States and Texas in 2040 assumed in the first simulation scenario, to have the race/ethnicity characteristics of 2008 and in the second those projected for 2040 by the U.S. Census Bureau for the nation and by the Texas State Data Center for Texas in 2040. The results show that the diversification of the population could increase the number of children in poverty in the United States by nearly 1.8 million more than would occur with the lower levels of diversification evident in 2008. In addition, poverty would become increasingly concentrated among minority children with minority children accounting for 76.2 percent of all children in poverty by 2040 and with Hispanic children accounting for nearly half of the children in poverty by 2040. Results for educational attainment show an increasing concentration of minority children in households with householders with very low levels of education such that by 2040, 85.2 percent of the increase in the number of children in poverty would be in households with a householder with less than a high school level of education. Finally, the results related to several health status factors show that children in poverty will have a higher prevalence of nearly all health conditions. For example, the number of children with untreated dental conditions could increase to more than 4 million in the United States and to nearly 500,000 in Texas. The results clearly show that improving the welfare of children in America will require concerted efforts to change the poverty, educational, and health status characteristics associated with minority status and particularly Hispanic status. Failing to do so will lead to a future in which America’s children are increasingly impoverished, more poorly educated, and less healthy and which, as a result, is an America with a more tentative future.
Resumo:
The power sector is to play a central role in a low carbon economy. In all the decarbonisation scenarios of the European Union renewable energy sources (RES) will be a crucial part of the solution. Current grids constitute however major bottlenecks for the future expansion of RES. Recognising the need for a modernisation of its grids, the European Union has called for the creation of a "smart supergrid" interconnecting European grids at the continental level and making them "intelligent" through the addition of information and communication technology (ICT). To implement its agenda the EU has taken a leading role in coordinating research efforts and creating a common legislative framework for the necessary modernisation of Europe’s grids. This paper intends to give both an overview and a critical appraisal of the measures taken so far by the European Union to "transform" the grids into the backbone of a decarbonised electricity system. It suggests that if competition is to play a significant role in the deployment of smart grids, the current regulatory paradigm will have to be fundamentally reassessed
Resumo:
Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.