806 resultados para fractal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractional dynamics reveals long range memory properties of systems described by means of signals represented by real numbers. Alternatively, dynamical systems and signals can adopt a representation where states are quantified using a set of symbols. Such signals occur both in nature and in man made processes and have the potential of a aftermath as relevant as the classical counterpart. This paper explores the association of Fractional calculus and symbolic dynamics. The results are visualized by means of the multidimensional technique and reveal the association between the fractal dimension and one definition of fractional derivative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies a discrete dynamical system of interacting particles that evolve by interacting among them. The computational model is an abstraction of the natural world, and real systems can range from the huge cosmological scale down to the scale of biological cell, or even molecules. Different conditions for the system evolution are tested. The emerging patterns are analysed by means of fractal dimension and entropy measures. It is observed that the population of particles evolves towards geometrical objects with a fractal nature. Moreover, the time signature of the entropy can be interpreted at the light of complex dynamical systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new general fitting method based on the Self-Similar (SS) organization of random sequences is presented. The proposed analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the mathematical model is absent but the reduced description in terms of some universal set of the fitting parameters is necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial data set. The general conditions of application of this fitting method describing the response of many complex systems and the forecast possibilities are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the information content of the chromosomes of 24 species. In a first phase, a scheme inspired in dynamical system state space representation is developed. For each chromosome the state space dynamical evolution is shed into a two dimensional chart. The plots are then analyzed and characterized in the perspective of fractal dimension. This information is integrated in two measures of the species’ complexity addressing its average and variability. The results are in close accordance with phylogenetics pointing quantitative aspects of the species’ genomic complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of robotic manipulators with backlash is analyzed. Based on the pseudo-phase plane two indices are proposed to evaluate the backlash effect upon the robotic system: the root mean square error and the fractal dimension. For the dynamical analysis the noisy signals captured from the system are filtered through wavelets. Several tests are developed that demonstrate the coherence of the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure-volume curves and the pseudophase-plane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fractal geometry is used to model of a naturally fractured reservoir and the concept of fractional derivative is applied to the diffusion equation to incorporate the history of fluid flow in naturally fractured reservoirs. The resulting fractally fractional diffusion (FFD) equation is solved analytically in the Laplace space for three outer boundary conditions. The analytical solutions are used to analyze the response of a naturally fractured reservoir considering the anomalous behavior of oil production. Several synthetic examples are provided to illustrate the methodology proposed in this work and to explain the diffusion process in fractally fractured systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractal geometry is a fundamental approach for describing the complex irregularities of the spatial structure of point patterns. The present research characterizes the spatial structure of the Swiss population distribution in the three Swiss geographical regions (Alps, Plateau and Jura) and at the entire country level. These analyses were carried out using fractal and multifractal measures for point patterns, which enabled the estimation of the spatial degree of clustering of a distribution at different scales. The Swiss population dataset is presented on a grid of points and thus it can be modelled as a "point process" where each point is characterized by its spatial location (geometrical support) and a number of inhabitants (measured variable). The fractal characterization was performed by means of the box-counting dimension and the multifractal analysis was conducted through the Renyi's generalized dimensions and the multifractal spectrum. Results showed that the four population patterns are all multifractals and present different clustering behaviours. Applying multifractal and fractal methods at different geographical regions and at different scales allowed us to quantify and describe the dissimilarities between the four structures and their underlying processes. This paper is the first Swiss geodemographic study applying multifractal methods using high resolution data.