833 resultados para estiramento crustal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pelagonian Zone and the Vardar Zone in Greece represent the western part of the Hellenide hinterland (Internal Hellenides). While the Pelagonian Zone comprises predominantly crystalline basement and sedimentary cover rocks, the Vardar Zone has long been regarded as an ophiolite-decorated suture zone separating the Pelagonian Zone from the Serbo-Macedonian Massif to the east. Felsic basement rocks from both areas, with the main focus put on the Pelagonian Zone, were dated in order to identify the major crust-forming episodes and to improve the understanding of the evolutionary history of the region. The interpretation of the single-zircon geochronology results was aided by geochemical investigations. The majority of the basement rocks from the Pelagonian Zone yielded Permo-Carboniferous intrusion ages around 300 Ma, underlining the importance of this crust-forming event for the Internal Hellenides of Greece. Geochemically these basement rocks are classified as subduction-related granitoids, which formed in an active continental margin setting. An important result was the identification of a Precambrian crustal unit within the crystalline basement of the Pelagonian Zone. Orthogneisses from the NW Pelagonian Zone yielded Neoproterozoic ages of c. 700 Ma and are so far the oldest known rocks in Greece. These basement rocks, which are also similar to active margin granitoids, were interpreted as remnants of a terrane, the Florina Terrane, which can be correlated to a Pan-African or Cadomian arc. Since the gneisses contain inherited zircons of Middle to Late Proterozoic ages, the original location of the Florina Terrane was probably at the northwestern margin of Gondwana. In the Vardar Zone an important phase of Upper Jurassic felsic magmatism is documented by igneous formation ages ranging from 155 to 164 Ma. The chemical and isotopic composition of these rocks is also in accord with their formation in a volcanic-arc setting at an active continental margin. Older continental material incorporated in the Vardar Zone is documented by 319-Ma-old gneisses and by inherited zircons of mainly Middle Palaeozoic ages. The prevalence of subduction-related igneous rocks indicates that arc formation and accretion orogeny were the most important processes during the evolution of this part of the Internal Hellenides. The geochronological results demonstrate that most of the Pelagonian Zone and the Vardar Zone crystalline basement formed during distinct pre-Alpine episodes at c. 700, 300 and 160 Ma with a predominance of the Permo-Carboniferous magmatic phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the key for the understanding of an orogenic belt is the characterization of the terranes involved and the identification of the suture(s) separating crustal blocks: these are essential information for large-scale paleo-reconstructions. In addition, the structural relationships between the terranes involved in the collisional processes and the eventual UHP relicts may provide first order inputs to exhumation models of subducted rocks. The structure of the Rhodope Massif (northern Greece and southern Bulgaria) results from the stacking of high-grade nappes during a continental collision, which age is comprised between Latest-Jurassic and Early-Cenozoic. UHP and HP relicts, associated with oceanic and ultramafic material, suggest the presence of a dismembered suture zone within the massif. The location of this suture remains unclear; furthermore, up to now, the UHP and eclogitic localities represent isolated spots and no synthesis on their structural position within the massif has been proposed. The first aim of this work is to define the relationships between HP-UHP relicts, crustal blocks, shear zones and amphibolitic material. To achieve this objective, we characterized the accreted blocks in terms of protoliths ages of the orthogneisses mainly along two cross sections on the Greek part of the belt. Geochemical affinities of meta-igneous rocks served as a complementary tool for terrane characterization and geodynamic interpretation. Single-zircon Pb-Pb evaporation and zircon U-Pb SHRIMP dating of orthogneiss protoliths define two groups of intrusion-ages: Permo-Carboniferous and Late Jurassic-Early Cretaceous. Structurally, these two groups correspond to distinct units: the Late Jurassic gneissic complex overthrusts the one bearing the Permo-Carboniferous orthogneisses. Mylonites, eclogites, amphibolites of oceanic affinities, and UHP micaschists, mark a “melange” zone, intensively sheared towards the SW, which separates the two units. Thus, we interpret them as two distinct terranes, the Rhodope and Thracia terranes, separated by the Nestos suture. The correlation of our findings in northern Greece to the Bulgarian part of the Massif suggests a northern rooting of the Nestos Suture. This configuration results of the closure of a marginal oceanic basin of the Tethys system by a north-directed subduction. This interpretation is supported by the geochemical affinities of the orthogneisses: the Late-Jurassic igneous rocks formed by subduction-related magmatism, pprobably the same north-directed subduction that gave rise to the UHP metamorphism of the metasediments of the “melange” zone. It is noteworthy that the UHP-HP relicts seem to be restricted to the contact between the two terranes suggesting that the UHP relicts are exhumed only within the suture zone. Furthermore, the singularity of the suture suggests that the Late-Jurassic subduction explains the occurrence of UHP and eclogite relicts in the Central Rhodope despite the large age range previously attributed the UHP and/or HP stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full set of geochemical and Sr, Nd and Pb isotope data both on bulk-rock and mineral samples is provided for volcanic rocks representative of the whole stratigraphic succession of Lipari Island in the Aeolian archipelago. These data, together with petrographic observations and melt/fluid inclusion investigations from the literature, give outlines on the petrogenesis and evolution of magmas through the magmatic and eruptive history of Lipari. This is the result of nine successive Eruptive Epochs developing between 271 ka and historical times, as derived from recentmost volcanological and stratigraphic studies, combined with available radiometric ages and correlation of tephra layers and marine terrace deposits. These Eruptive Epochs are characterized by distinctive vents partly overlapping in space and time, mostly under control of the main regional tectonic trends (NNW-SSE, N-S and minor E-W). A large variety of lava flows, scoriaceous deposits, lava domes, coulees and pyroclastics are emplaced, ranging in composition through time from calcalkaline (CA) and high-K (HKCA) basaltic andesites to rhyolites. CA and HKCA basaltic andesitic to dacitic magmas were erupted between 271 and 81 ka (Eruptive Epochs 1-6) from volcanic edifices located along the western coast of the island (and subordinately the eastern Monterosa) and the M.Chirica and M.S.Angelo stratocones. These mafic to intermediate magmas mainly evolved through AFC and RAFC processes, involving fractionation of mafic phases, assimilation of wall rocks and mixing with newly injected mafic magmas. Following a 40 ka-long period of volcanic quiescence, the rhyolitic magmas were lately erupted from eruptive vents located in the southern and north-eastern sectors of Lipari between 40 ka and historical times (Eruptive Epochs 7-9). They are suggested to derive from the previous mafic to intermediate melts through AFC processes. During the early phases of rhyolitic magmatism (Eruptive Epochs 7-8), enclaves-rich rocks and banded pumices, ranging in composition from HKCA dacites to low-SiO2 rhyolites were erupted, representing the products of magma mixing between fresh mafic magmas and the fractionated rhyolitic melts. The interaction of mantle-derived magmas with the crust represents an essential process during the whole magmatic hystory of Lipari, and is responsible for the wide range of observed geochemical and isotopic variations. The crustal contribution was particularly important during the intermediate phases of activity of Lipari when the cordierite-bearing lavas were erupted from the M. S.Angelo volcano (Eruptive Epoch 5, 105 ka). These lavas are interpreted as the result of mixing and subsequent hybridization of mantle-derived magmas, akin to the ones characterizing the older phases of activity of Lipari (Eruptive Epochs 1-4), and crustal anatectic melts derived from dehydration-melting reactions of metapelites in the lower crust. A comparison between the adjacent islands of Lipari and Vulcano outlines that their mafic to intermediate magmas seem to be genetically connected and derive from a similar mantle source affected by different degrees of partial melting (and variable extent of crustal assimilation) producing either the CA magmas of Lipari (higher degrees) or the HKCA to SHO magmas of Vulcano (lower degrees). On a regional scale, the most primitive rocks (SiO2<56%, MgO>3.5%) of Lipari, Vulcano, Salina and Filicudi are suggested to derive from a similar MORB-like source, variably metasomatized by aqueous fluids coming from the slab and subordinately by the additions of sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Attisch-Kykladische Massiv ist Teil der Helleniden, einem Gebirgszug im östlichen Mittelmeerraum zwischen Alpen und Himalaya. Seit dem späten Mesozoikum unterlag diese Region dem Einfluß der alpidischen Orogenphasen. Die vorliegende Arbeit befasst sich mit den präalpidischen Grundgebirgseinheiten der Kykladen, die durch grünschieferfaziell überprägte Gneise und Marmore repräsentiert werden. Diese wurden geochemisch und isotopisch analysiert. Geochemisch stellen sie granitische und granodioritische Orthogneise subalkalinen, peraluminösen Charakters dar. Ihre Haupt- und Spurenelementsignaturen deuten auf die Existenz separater Schmelzen ähnlicher krustaler Zusammensetzung hin. Dies reflektiert auch die Rb/Sr- und Sm/Nd-Isotopie mit Errorchronenaltern von ca. 310 Ma. Die 87Sr/86Sri-Zusammensetzung besitzt einen rel. niedrigen Mittelwert von 0.7072±0.0019. Das 143Nd/144Ndi-Verhältnis von 0.51187±0.00011 korrespondiert mit leicht erhöhten eNd-Werten zwischen -8 und –7, was auf komplex zusammengesetzte Ausgangsschmelzen deutet (Hybridtyp "Hs" ). Zirkonanalysen liefern magmatische Intrusionsalter von 300 Ma, ererbte Körner bis zu 2305±1 Ma, was die Beteiligung alter Kontinentalkruste belegt. Das Tectonic Setting befindet sich im aktiven Kontinentalrand und wird als VAG klassifiziert. Ausgewählte Marmore von Naxos weisen ein relativ niedriges 87Sr/86Sr-Verhältnis von 0.707295±0.000012 auf, das mit dem des Meerwassers während des Mittleren Juras übereinstimmt und mit dem Pb/Pb-Isochronenalter von 172±17 Ma korreliert

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E’ mostrata l’analisi e la modellazione di dati termocronologici di bassa temperatura da due regioni Alpine: il Sempione ed il Brennero. Le faglie distensive presenti bordano settori crostali profondi appartenenti al dominio penninico: il duomo metamorfico Lepontino al Sempione e la finestra dei Tauri al Brennero. I dati utilizzati sono FT e (U-Th)/He su apatite. Per il Sempione i dati provengono dalla bibliografia; per il Brennero si è provveduto ad un nuovo campionamento, sia in superficie che in sotterraneo. Gli attuali lavori per la galleria di base del Brennero (BBT), hanno consentito, per la prima volta, di raccogliere dati di FT e (U-Th)/He in apatite in sottosuolo per la finestra dei Tauri occidentale. Le analisi sono state effettuate tramite un codice a elementi finiti, Pecube, risolvente l’equazione di diffusione del calore per una topografia evolvente nel tempo. Il codice è stato modificato per tener conto dei dati sotterranei. L’inversione dei dati è stata effettuata usando il Neighbourhood Algorithm (NA), per ottenere il più plausibile scenario di evoluzione morfotettonico. I risultati ottenuti per il Sempione mostrano: ipotetica evoluzione dello stile tettonico della faglia del Sempione da rolling hinge a low angle detachment a 6.5 Ma e la cessazione dell’attività a 3 Ma; costruzione del rilievo fino a 5.5 Ma, smantellamento da 5.5 Ma ad oggi, in coincidenza dei cambiamenti climatici Messiniani e relativi all’inizio delle maggiori glaciazioni; incremento dell’esumazione da 0–0.6 mm/anno a 0.6–1.2 mm/anno a 2.4 Ma nell’emisfero settentrionale. I risultati al Brennero mostrano: maggiore attività tettonica della faglia del Brennero (1.3 mm/anno), maggiore attività esumativa (1–2 mm/anno) prima dei 10 Ma; crollo dell’attività della faglia del Brennero fra 10 Ma e oggi (0.1 mm/anno) e dell’attività esumativa nello stesso periodo (0.1–0.3 mm/anno); nessun aumento del tasso esumativo o variazioni topografiche negli ultimi 5 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD thesis concerns geochemical constraints on recycling and partial melting of Archean continental crust. A natural example of such processes was found in the Iisalmi area of Central Finland. The rocks from this area are Middle to Late Archean in age and experienced metamorphism and partial melting between 2.7-2.63 Ga. The work is based on extensive field work. It is furthermore founded on bulk rock geochemical data as well as in-situ analyses of minerals. All geochemical data were obtained at the Institute of Geosciences, University of Mainz using X-ray fluorescence, solution ICP-MS and laser ablation-ICP-MS for bulk rock geochemical analyses. Mineral analyses were accomplished by electron microprobe and laser ablation ICP-MS. Fluid inclusions were studied by microscope on a heating-freezing-stage at the Geoscience Center, University Göttingen. Part I focuses on the development of a new analytical method for bulk rock trace element determination by laser ablation-ICP-MS using homogeneous glasses fused from rock powder on an Iridium strip heater. This method is applicable for mafic rock samples whose melts have low viscosities and homogenize quickly at temperatures of ~1200°C. Highly viscous melts of felsic samples prevent melting and homogenization at comparable temperatures. Fusion of felsic samples can be enabled by addition of MgO to the rock powder and adjustment of melting temperature and melting duration to the rock composition. Advantages of the fusion method are low detection limits compared to XRF analyses and avoidance of wet-chemical processing and use of strong acids as in solution ICP-MS as well as smaller sample volumes compared to the other methods. Part II of the thesis uses bulk rock geochemical data and results from fluid inclusion studies for discrimination of melting processes observed in different rock types. Fluid inclusion studies demonstrate a major change in fluid composition from CO2-dominated fluids in granulites to aqueous fluids in TTG gneisses and amphibolites. Partial melts were generated in the dry, CO2-rich environment by dehydration melting reactions of amphibole which in addition to tonalitic melts produced the anhydrous mineral assemblages of granulites (grt + cpx + pl ± amph or opx + cpx + pl + amph). Trace element modeling showed that mafic granulites are residues of 10-30 % melt extraction from amphibolitic precursor rocks. The maximum degree of melting in intermediate granulites was ~10 % as inferred from modal abundances of amphibole, clinopyroxene and orthopyroxene. Carbonic inclusions are absent in upper-amphibolite facies migmatites whereas aqueous inclusion with up to 20 wt% NaCl are abundant. This suggests that melting within TTG gneisses and amphibolites took place in the presence of an aqueous fluid phase that enabled melting at the wet solidus at temperatures of 700-750°C. The strong disruption of pre-metamorphic structures in some outcrops suggests that the maximum amount of melt in TTG gneisses was ~25 vol%. The presence of leucosomes in all rock types is taken as the principle evidence for melt formation. However, mineralogical appearance as well as major and trace element composition of many leucosomes imply that leucosomes seldom represent frozen in-situ melts. They are better considered as remnants of the melt channel network, e.g. ways on which melts escaped from the system. Part III of the thesis describes how analyses of minerals from a specific rock type (granulite) can be used to determine partition coefficients between different minerals and between minerals and melt suitable for lower crustal conditions. The trace element analyses by laser ablation-ICP-MS show coherent distribution among the principal mineral phases independent of rock composition. REE contents in amphibole are about 3 times higher than REE contents in clinopyroxene from the same sample. This consistency has to be taken into consideration in models of lower crustal melting where amphibole is replaced by clinopyroxene in the course of melting. A lack of equilibrium is observed between matrix clinopyroxene / amphibole and garnet porphyroblasts which suggests a late stage growth of garnet and slow diffusion and equilibration of the REE during metamorphism. The data provide a first set of distribution coefficients of the transition metals (Sc, V, Cr, Ni) in the lower crust. In addition, analyses of ilmenite and apatite demonstrate the strong influence of accessory phases on trace element distribution. Apatite contains high amounts of REE and Sr while ilmenite incorporates about 20-30 times higher amounts of Nb and Ta than amphibole. Furthermore, trace element mineral analyses provide evidence for magmatic processes such as melt depletion, melt segregation, accumulation and fractionation as well as metasomatism having operated in this high-grade anatectic area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is lively debated how eclogites find their way from deep to mid-crustal levels during exhumation. Different exhumation models for high-pressure and ultrahigh-pressure rocks were suggested in previous studies, based mainly on field observations and less on microstructural studies on the exhumed rocks. The development and improvement of electron microscopy techniques allows it, to focus interest on direct investigations of microstructures and crystallographic properties in eclogites. In this case, it is of importance to study the applicability of crystallographic measurements on eclogites for exhumation processes and to unravel which processes affect eclogite textures. Previous studies suggested a strong relationship between deformation and lattice preferred orientation (LPO) in omphacite but it is still unclear if the deformation is related to the exhumation of eclogites. This study is focused on the questions which processes affect omphacite LPO and if textural investigations of omphacite are applicable for studying eclogite exhumation. Therefore, eclogites from two examples in the Alps and in the Caledonides were collected systematically and investigated with respect to omphacite LPO by using the electron backscattered diffraction (EBSD) technique. Omphacite textures of the Tauern Window (Austria) and the Western Gneiss Region (Norway) were studied to compare lattice preferred orientation with field observations and suggested exhumation models from previous studies. The interpretation of omphacite textures, regarding the deformation regime is mainly based on numerical simulations in previous studies. Omphacite LPO patterns of the Eclogite Zone are clearly independent from any kind of exhumation process. The textures were generated during omphacite growth on the prograde path of eclogite development until metamorphic peak conditions. Field observations in the Eclogite Zone show that kinematics in garnet mica schist, surrounding the eclogites, strongly indicate an extrusion wedge geometry. Stretching lineations show top-N thrusting at the base and a top-S normal faulting with a sinistral shear component at the top of the Eclogite Zone. The different shear sense on both sides of the unit does not affect the omphacite textures in any way. The omphacite lattice preferred orientation patterns of the Western Gneiss Region can not be connected with any exhumation model. The textures were probably generated during the metamorphic peak and reflect the change from subduction to exhumation. Eclogite Zone and Western Gneiss Region differ significantly in size and especially in metamorphic conditions. While the Eclogite Zone is characterized by constant P-T conditions (600-650°C, 20-25 kbar), the Western Gneiss Region contains a wide P-T range from high- to ultrahigh pressure conditions (400-800°C, 20-35 kbar). In contrast to this, the omphacite textures of both units are very similar. This means that omphacite LPO is independent from P-T conditions and therefore from burial depth. Further, in both units, omphacite LPO is independent from grain and subgrain size as well as from any shape preferred orientation (SPO) on grain and subgrain scale. Overall, omphacite lattice preferred orientation are generated on the prograde part of omphacite development. Therefore, textural investigations on omphacite LPO are not applicable to study eclogite exhumation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PhD thesis at hand consists of three parts and describes the petrogenetic evolution of Uralian-Alaskan-type mafic ultramafic complexes in the Ural Mountains, Russia. Uralian-Alaskan-type mafic-ultramafic complexes are recognized as a distinct class of intrusions. Characteristic petrologic features are the concentric zonation of a central dunite body grading outward into wehrlite, clinopyroxenite and gabbro, the absence of orthopyroxene and frequently occurring platinum group element (PGE) mineralization. In addition, the presence of ferric iron-rich spinel discriminates Uralian-Alaskan-type complexes from most other mafic ultramafic rock assemblages. The studied Uralian-Alaskan-type complexes (Nizhnii Tagil, Kytlym and Svetley Bor) belong to the southern part of a 900 km long, N–S-trending chain of similar intrusions between the Main Uralian Fault to the west and the Serov-Mauk Fault to the east. The first chapter of this thesis studies the evolution of the ultramafic rocks tracing the compositional variations of rock forming and accessory minerals. The comparison of the chemical composition of olivine, clinopyroxene and chromian spinel from the Urals with data from other localities indicates that they are unique intrusions having a characteristic spinel and clinopyroxene chemistry. Laser ablation-ICPMS (LA-ICPMS ) analyses of trace element concentrations in clinopyroxene are used to calculate the composition of their parental melt which is characterized by enriched LREE (0.5-5.2 prim. mantle) and other highly incompatible elements (U, Th, Ba, Rb) relative to the HREE (0.25-2.0 prim. mantle). A subduction-related geotectonic setting is indicated by a positive anomaly for Sr and negative anomalies for Ti, Zr and Hf. The mineral compositions monitor the evolution of the parental magmas and decipher differences between the studied complexes. In addition, the observed variation in LREE/HREE (for example La/Lu = 2-24) can be best explained with the model of an episodically replenished and erupted open magma chamber system with the extensive fractionation of olivine, spinel and clinopyroxene. The data also show that ankaramites in a subduction-related geotectonic setting could represent parental magmas of Uralian-Alaskan-type complexes. The second chapter of the thesis discusses the chemical variation of major and trace elements in rock-forming minerals of the mafic rocks. Electron microprobe and LA-ICPMS analyses are used to quantitatively describe the petrogenetic relationship between the different gabbroic lithologies and their genetic link to the ultramafic rocks. The composition of clinopyroxene identifies the presence of melts with different trace element abundances on the scale of a thin section and suggests the presence of open system crustal magma chambers. Even on a regional scale the large variation of trace element concentrations and ratios in clinopyroxene (e.g. La/Lu = 3-55) is best explained by the interaction of at least two fundamentally different magma types at various stages of fractionation. This requires the existence of a complex magma chamber system fed with multiple pulses of magmas from at least two different coeval sources in a subduction-related environment. One source produces silica saturated Island arc tholeiitic melts. The second source produces silica undersaturated, ultra-calcic, alkaline melts. Taken these data collectively, the mixing of the two different parental magmas is the dominant petrogenetic process explaining the observed chemical variations. The results further imply that this is an intrinsic feature of Uralian-Alaskan-type complexes and probably of many similar mafic-ultramafic complexes world-wide. In the third chapter of this thesis the major element composition of homogeneous and exsolved spinel is used as a petrogenetic indicator. Homogeneous chromian spinel in dunites and wehrlites monitors the fractionation during the early stages of the magma chamber and the onset of clinopyroxene fractionation as well as the reaction of spinel with interstitial liquid. Exsolved spinel is present in mafic and ultramafic rocks from all three studied complexes. Its composition lies along a solvus curve which defines an equilibrium temperature of 600°C, given that spinel coexists with olivine. This temperature is considered to be close to the temperature of the host rocks into which the studied Uralian-Alaskan-type complexes intruded. The similarity of the exsolution temperatures in the different complexes over a distance of several hundred kilometres implies a regional tectonic event that terminated the exsolution process. This event is potentially associated with the final exhumation of the Uralian-Alaskan-type complexes along the Main Uralian Fault and the Serov-Mauk Fault in the Uralian fold belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this PhD thesis, a multidisciplinary study has been carried out on metagranitoids and paragneisses from the Eastern Rhodope Massif, northern Greece, to decipher the pre-Alpine magmatic and geodynamic evolution of the Rhodope Massif and to correlate the eastern part with the western/central parts of the orogen. The Rhodope Massif, which occupies the major part of NE Greece and S Bulgaria, represents the easternmost part of the Internal Hellenides. It is regarded as a nappe stack of high-grade units, which is classically subdivided into an upper unit and a lower unit, separated by a SSE-NNW trending thrust plane, the Nestos thrust. Recent research in the central Greek Rhodope Massif revealed that the two units correspond to two distinct terranes of different age, the Permo-Carboniferous Thracia Terrane, which was overthrusted by the Late Jurassic/Early Cretaceous Rhodope Terrane. These terranes are separated by the Nestos suture, a composite zone comprising metapelites, metabasites, metagranitoids and marbles, which record high-pressure and even ultrahigh-pressure metamorphism in places. Similar characteristic rock associations were investigated during this study along several well-constrained cross sections in vincity to the Ada, Sidiro and Kimi villages in the Greek Eastern Rhodope Massif. Field evidence revealed that the contact zone of the two terranes in the Eastern Rhodope Massif is characterized by a mélange of metapelites, migmatitic amphibolites/eclogites, strongly sheared orthogneisses and marbles. The systematical occurrence of this characteristic rock association between the terranes implies that the Nestos suture is a continuous belt throughout the Greek Rhodope Massif. In this study, a new UHP locality could be established and for the first time in the Greek Rhodope, metamorphic microdiamonds were identified in situ in their host zircons using Laser-Raman spectroscopy. The presence of the diamonds as well as element distribution patterns of the zircons, obtained by TOF-SIMS, indicate metamorphic conditions of T > 1000 °C and P > 4 GPa. The high-pressure and ultrahigh-pressure rocks of the mélange zone are considered to have formed during the subduction of the Nestos Ocean in Jurassic times at ~150 Ma. Melting of metapelitic rocks at UHP conditions facilitated the exhumation to lower crustal levels. To identify major crust forming events, basement granitoids were dated by LA-SF-ICPMS and SHRIMP-II U-Pb analyses of zircons. The geochronological results revealed that the Eastern Rhodope Massif consists of two crustal units, a structurally lower Permo-Carboniferous unit corresponding to the Thracia Terrane and a structurally upper Late Jurassic/Early Cretaceous unit corresponding to the Rhodope Terrane, like it was documented for the Central Rhodope Massif. Inherited zircons in the orthogneisses from the Thracia Terrane of the Eastern Rhodope Massif indicate the presence of a pre-existing Neoproterozoic and Ordovician-Silurian basement in this region. Triassic magmatism is witnessed by the zircons of few orthogneisses from the easternmost Rhodope Massif and is interpreted to be related to rifting processes. Whole-rock major and trace element analyses indicate that the metagranitoids from both terranes originated in a subduction-related magmatic-arc environment. The Sr-Nd isotope data for both terranes of the Eastern and Central Rhodope Massif suggest a mixed crust-mantle source with variable contributions of older crustal material as already indicated by the presence of inherited zircons. Geochemical and isotopic similarity of the basement of the Thracia Terrane and the Pelagonian Zone implies that the Thracia Terrane is a fragment of a formerly unique Permo-Carboniferous basement, separated by rifting and opening of the Meliata-Maliac ocean system in Triassic times. A branch of the Meliata-Maliac ocean system, the Nestos Ocean, subducted northwards in Late Jurassic times leading to the formation of the Late Jurassic/Early Cretaceous Rhodope magmatic arc on remnants of the Thracia Terrane as suggested by inherited Permo-Carboniferous zircons. The ~150 Ma zircon ages of the orthogneisses from the Rhodope Terrane indicate that subduction-related magmatism and HP/UHP metamorphism occurred during the same subduction phase. Subduction ceased due to the closure of the Nestos Ocean in the Late Jurassic/Early Cretaceous. The post-Jurassic evolution of the Rhodope Massif is characterized by the exhumation of the Rhodope core complex in the course of extensional tectonics associated with late granite intrusions in Eocene to Miocene times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of apatite fission tracks is applied to the study of the syn- and post-collisional thermochronological evolution of a vast area that includes the Eastern Pontides, their continuation in the Lesser Caucasus of Georgia (Adjara-Trialeti zone) and northern Armenia, and the eastern Anatolian Plateau. The resulting database is then integrated with the data presented by Okay et al. (2010) for the Bitlis Pütürge Massif, i.e. the western portion of the Bitlis-Zagros collision zone between Arabia and Eurasia. The mid-Miocene exhumation episode along the Black Sea coast and Lesser Caucasus of Armenia documented in this dissertation mirrors the age of collision between the Eurasian and Arabian plates along the Bitlis suture zone. We argue that tectonic stresses generated along the Bitlis collision zone were transmitted northward across eastern Anatolia and focused (i) at the rheological boundary between the Anatolian continental lithosphere and the (quasi)oceanic lithosphere of the Black Sea, and (ii) along major pre-existing discontinuities like the Sevan-Akera suture zone.The integration of both present-day crustal dynamics (GPS-derived kinematics and distribution of seismicity) and thermochronological data presented in this paper provides a comparison between short- and long-term deformation patterns for the entire eastern Anatolia-Transcaucasian region. Two successive stages of Neogene deformation of the northern foreland of the Arabia-Eurasia collision zone can be inferred. (i) Early and Middle Miocene: continental deformation was concentrated along the Arabia-Eurasia (Bitlis) collision zone but tectonic stress was also transferred northward across eastern Anatolia, focusing along the eastern Black Sea continent-ocean rheological transition and along major pre-existing structural discontinuities. (ii) Since Late-Middle Miocene time the westward translation of Anatolia and the activation of the North and Eastern Anatolian Fault systems have reduced efficient northward stress transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mongolia occupies a central position within the eastern branch of the large accretionary Central Asian Orogenic Belt (CAOB) or Altaids. The present work aims to outline the geodynamic environment and possible evolution of this part of the eastern CAOB, predominantly from the Cambrian to the middle Palaeozoic. The investigation primarily focussed on zircon geochronology as well as whole-rock geochemical and Sm–Nd isotopic analyses for a variety of metaigneous rocks from the southern Hangay and Gobi-Altai regions in south-central Mongolia. The southern slope of the Hangay Mountains in central Mongolia exposes a large NWSE-trending middle Neoproterozoic ophiolitic complex (c. 650 Ma), which is tectonically integrated within an accretionary complex developed between the Precambrian Baydrag and Hangay crustal blocks. Formation of the entire accretionary system along the north-eastern margin of the Baydrag block mainly occurred during the early Cambrian, but convergence within this orogenic zone continued until the early Ordovician, because of on-going southward subduction-accretion of the Baydrag block. An important discovery is the identification of a late Mesoproterozoic to early Neoproterozoic belt within the northern Gobi-Altai that was reworked during the late Cambrian and throughout the late Ordovician/Devonian. Early Silurian low-grade mafic and felsic metavolcanic rocks from the northern Gobi-Altai display subduction-related geochemical features and highly heterogeneous Nd isotopic compositions, which suggest an origin at a mature active continental margin. Early Devonian protoliths of granodioritic and mafic gneisses from the southern Gobi-Altai display geochemical and Nd isotopic compositions compatible with derivation and evolution from predominantly juvenile crustal and mantel sources and these rocks may have been emplaced within the outboard portion of the late Ordovician/early Silurian active continental margin. Moreover, middle Devonian low-grade metavolcanic rocks from the southwestern Gobi-Altai yielded geochemical and Nd isotopic data consistent with emplacement in a transitional arc-backarc setting. The combined U–Pb zircon ages and geochemical data obtained from the Gobi-Altai region suggest that magmatism across an active continental margin migrated oceanwards through time by way of subduction zone retreat throughout the Devonian. Progressive extension of the continental margin was associated with the opening of a backarc basin and culminated in the late Devonian with the formation of a Japan-type arc front facing a southward open oceanic realm (present-day coordinates).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Ziel dieser Arbeit bestand in der Untersuchung der Störungsverteilung und der Störungskinematik im Zusammenhang mit der Hebung der Riftschultern des Rwenzori Gebirges.rnDas Rwenzori Gebirge befindet sich im NNE-SSWbis N-S verlaufenden Albertine Rift, des nördlichsten Segments des westlichen Armes des Ostafrikanischen Grabensystems. Das Albertine Rift besteht aus Becken unterschiedlicher Höhe, die den Lake Albert, Lake Edward, Lake George und Lake Kivu enthalten. Der Rwenzori horst trennt die Becken des Lake Albert und des Lake Edward. Es erstreckt sich 120km in N-S Richtung, sowie 40-50km in E-W Richtung, der h¨ochste Punkt befindet sich 5111 ü. NN. Diese Studie untersucht einen Abschnitt des Rifts zwischen etwa 1°N und 0°30'S Breite sowie 29°30' und 30°30' östlicher Länge ersteckt. Auch die Feldarbeit konzentrierte sich auf dieses Gebiet.rnrnHauptzweck dieser Studie bestand darin, die folgende These auf ihre Richtigkeit zu überprüfen: ’Wenn es im Verlauf der Zeit tatsächlich zu wesentlichen Änderungen in der Störungskinematik kam, dann ist die starke Hebung der Riftflanken im Bereich der Rwenzoris nicht einfach durch Bewegung entlang der Graben-Hauptst¨orungen zu erklären. Vielmehr ist sie ein Resultat des Zusammenspiels mehrerer tektonische Prozesse, die das Spannungsfeld beeinflussen und dadurch Änderungen in der Kinematik hervorrufen.’ Dadurch konzentrierte sich die Studie in erster Linie auf die Störungsanalyse.rnrnDie Kenntnis regionaler Änderungen der Extensionsrichtung ist entscheidend für das Verständnis komplexer Riftsysteme wie dem Ostafrikanischen Graben. Daher bestand der Kern der Untersuchung in der Kartierung von Störungen und der Untersuchung der Störungskinematik. Die Aufnahme strukturgeologischer Daten konzentrierte sich auf die Ugandische Seite des Rifts, und Pal¨aospannungen wurden mit Hilfe von St¨orungsdaten durch Spannungsinversion rekonstruiert.rnDie unterschiedliche Orientierung spr¨oder Strukturen im Gelände, die geometrische Analyse der geologischen Strukturen sowie die Ergebnisse von Mikrostrukturen im Dünnschliff (Kapitel 4) weisen auf verschiedene Spannungsfelder hin, die auf mögliche Änderungen der Extensionsrichtung hinweisen. Die Resultate der Spannungsinversion sprechen für Ab-, Über- und Blattverschiebungen sowie für Schrägüberschiebungen (Kapitel 5). Aus der Orientierung der Abschiebungen gehen zwei verschiedene Extensionsrichtungen hervor: im Wesentlichen NW-SE Extension in fast allen Gebieten, sowie NNE-SSW Extension im östlichen Zentralbereich.rnAus der Analyse von Blattverschiebungen ergaben sich drei unterschiedliche Spannungszustände. Zum Einen NNW-SSE bis N-S Kompression in Verbindung mit ENE-WSW bzw E-W Extension wurde für die nördlichen und die zentralen Ruwenzoris ausgemacht. Ein zweiter Spannungszustand mit WNW-ESE Kompression/NNE-SSW Extension betraf die Zentralen Rwenzoris. Ein dritter Spannungszustand mit NNW-SSE Extension betraf den östlichen Zentralteil der Rwenzoris. Schrägüberschiebungen sind durch dazu schräge Achsen charakterisiert, die für N-S bis NNW-SSE Kompression sprechen und ausschließlich im östlichen Zentralabschnitt auftreten. Überschiebungen, die hauptsächlich in den zentralen und den östlichen Rwenzoris auftreten, sprechen für NE-SW orientierten σ2-Achsen und NW-SE Extension.rnrnEs konnten drei unterschiedliche Spannungseinflüsse identifiziert werden: auf die kollisionsbedingte Bildung eines Überschiebungssystem folgte intra-kratonische Kompression und schließlich extensionskontrollierte Riftbildung. Der Übergang zwischen den beiden letztgenannten Spannungszuständen erfolgte Schrittweise und erzeugte vermutlich lokal begrenzte Transpression und Transtension. Gegenw¨artig wird die Störungskinematik der Region durch ein tensiles Spannungsregime in NW-SE bis N-S Richtung bestimmt.rnrnLokale Spannungsvariationen werden dabei hauptsächlich durch die Interferenzrndes regionalen Spannungsfeldes mit lokalen Hauptst¨orungen verursacht. Weitere Faktoren die zu lokalen Veränderungen des Spannungsfeldes führen können sind unterschiedliche Hebungsgeschwindigkeiten, Blockrotation oder die Interaktion von Riftsegmenten. Um den Einfluß präexistenter Strukturen und anderer Bedingungen auf die Hebung der Rwenzoris zu ermitteln, wurde der Riftprozeß mit Hilfe eines analogen ’Sandbox’-Modells rekonstruiert (Kapitel 6). Da sich die Moho-Diskontinuität im Bereich des Arbeitsgebietes in einer Tiefe von 25 km befindet, aktive Störungen aber nur bis zu einer Tiefe von etwa 20 km beobachtet werden können (Koehn et al. 2008), wurden nur die oberen 25 km im Modell nachbebildet. Untersucht und mit Geländebeobachtungen verglichen wurden sowohl die Reihenfolge, in der Riftsegmente entstehen, als auch die Muster, die sich im Verlauf der Nukleierung und des Wachstums dieser Riftsegmente ausbilden. Das Hauptaugenmerk wurde auf die Entwicklung der beiden Subsegmente gelegt auf denen sich der Lake Albert bzw. der Lake Edward und der Lake George befinden, sowie auf das dazwischenliegende Rwenzori Gebirge. Das Ziel der Untersuchung bestand darin herauszufinden, in welcher Weise das südwärts propagierende Lake Albert-Subsegment mit dem sinistral versetzten nordwärts propagierenden Lake Edward/Lake George-Subsegment interagiert.rnrnVon besonderem Interesse war es, in welcherWeise die Strukturen innerhalb und außerhalb der Rwenzoris durch die Interaktion dieser Riftsegmente beeinflußt wurden. rnrnDrei verschiedene Versuchsreihen mit unterschiedlichen Randbedingungen wurden miteinander verglichen. Abhängig vom vorherrschenden Deformationstyp der Transferzone wurden die Reihen als ’Scherungs-dominiert’, ’Extensions-dominiert’ und als ’Rotations-dominiert’ charakterisiert. Die Beobachtung der 3-dimensionalen strukturellen Entwicklung der Riftsegmente wurde durch die Kombination von Modell-Aufsichten mit Profilschnitten ermöglicht. Von den drei genannten Versuchsreihen entwickelte die ’Rotationsdominierten’ Reihe einen rautenförmiger Block im Tranferbereich der beiden Riftsegmente, der sich um 5−20° im Uhrzeigersinn drehte. DieserWinkel liegt im Bereich des vermuteten Rotationswinkel des Rwenzori-Blocks (5°). Zusammengefasst untersuchen die Sandbox-Versuche den Einfluss präexistenter Strukturen und der Überlappung bzw. Überschneidung zweier interagierender Riftsegmente auf die Entwicklung des Riftsystems. Sie befassen sich darüber hinaus mit der Frage, welchen Einfluss Blockbildung und -rotation auf das lokale Stressfeld haben.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical modelling was performed to study the dynamics of multilayer detachment folding and salt tectonics. In the case of multilayer detachment folding, analytically derived diagrams show several folding modes, half of which are applicable to crustal scale folding. 3D numerical simulations are in agreement with 2D predictions, yet fold interactions result in complex fold patterns. Pre-existing salt diapirs change folding patterns as they localize the initial deformation. If diapir spacing is much smaller than the dominant folding wavelength, diapirs appear in fold synclines or limbs.rnNumerical models of 3D down-building diapirism show that sedimentation rate controls whether diapirs will form and influences the overall patterns of diapirism. Numerical codes were used to retrodeform modelled salt diapirs. Reverse modelling can retrieve the initial geometries of a 2D Rayleigh-Taylor instability with non-linear rheologies. Although intermediate geometries of down-built diapirs are retrieved, forward and reverse modelling solutions deviate. rnFinally, the dynamics of fold-and-thrusts belts formed over a tilted viscous detachment is studied and it is demonstrated that mechanical stratigraphy has an impact on the deformation style, switching from thrust- to folding-dominated. The basal angle of the detachment controls the deformation sequence of the fold-and-thrust belt and results are consistent with critical wedge theory.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An outstanding problem in understanding the late Proterozoic tectonic assembly of the southwest is identifying the tectonic setting associated with regional metamorphism at 1.4 Ga. Both isobaric heating and cooling, and counter-clockwise looping PT paths are proposed for this time. We present a study of the Proterozoic metamorphic and deformation history of the Cerro Colorado area, southern Tusas Mountains, New Mexico, which shows that the metamorphism in this area records near-isothermal decompression from 6 to 4 kbar at ca. 1.4 Ga. We do not see evidence for isobaric heating at this time. Decompression from peak pressures is recorded by the reaction Ms + Grt = St + Bt, with a negative slope in PT space; the reaction Ms + Grt = Sil + Bt, which is nearly horizontal in PT space; and partial to total pseudomorphing of kyanite by sillimanite during the main phase of deformation. The clearest reaction texture indicating decompression near peak metamorphic temperature is the replacement of garnet by clots of sillimanite, which are surrounded by halos of biotite. The sillimanite clots, most without relict garnet in the cores and with highly variable aspect ratios, are aligned. They define a lineation that formed with the dominant foliation. An inverted metamorphic gradient is locally defined by sillimanite-garnet schists (625 degrees C) structurally above staurolite-garnet schists (550 degrees C) and implies ductile thrusting during the main phase of deformation. The exhumation that led to the recorded decompression was likely in response to crustal thickening due to ductile thrusting and subsequent denudation.