924 resultados para emission of hydrogen sulfide into the gas phase
Resumo:
The objective of this cross-sectional and quantitative study was to identify the prevalence and determinants of exclusive breastfeeding among infants less than six months of age in the city of Serrana, Sao Paulo, Brazil in 2009. A validated semi-structured questionnaire was administered to the guardians of the children less than six months of age who attended the second phase of a Brazilian vaccination campaign against polio. Univariate and multivariate analysis presented in odds ratios and confidence intervals was accomplished. Of the total of 275 infant participants, only 29.8% were exclusively breastfed. Univariate analysis revealed that mothers who work outside the home without maternity leave, mothers who did not work outside the home, adolescent mothers, and the use of pacifiers have a greater chance of interrupting exclusive breastfeeding. In the multivariate analysis, mothers who work outside the home without maternity leave are three times more likely to wean their children early. Results provide suggestions for the redirection and planning of interventions targeting breastfeeding.
Resumo:
The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.
Resumo:
This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.
Resumo:
The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.
Resumo:
The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the regulation of sympathetic nerve activity, which is significantly elevated in chronic heart failure (CHF). Fractalkine (FKN) and its cognate receptor, CX3CR1, are constitutively expressed in the central nervous system, but their role and physiological significance are not well known. The aims of the present study were to determine whether FKN plays a cardiovascular role within the PVN and to investigate how the actions of FKN might be altered in CHF. We show that both FKN and CX3CR1 are expressed on neurons in the PVN of rats, suggesting that they may have a physiological function in this brain nucleus. Unilateral microinjection of FKN directly into the PVN of anaesthetized rats elicited a significant dose-related decrease in blood pressure (1.0 nmol, -5 ± 3 mmHg; 2.5 nmol, -13 ± 2 mmHg; 5.0 nmol, -22 ± 3 mmHg; and 7.5 nmol, -32 ± 3 mmHg) and a concomitant increase in heart rate (1.0 nmol, 6 ± 3 beats min(-1); 2.5 nmol, 11 ± 3 beats min(-1); 5 nmol, 18 ± 4 beats min(-1); and 7.5 nmol, 27 ± 5 beats min(-1)) compared with control saline microinjections. In order to determine whether FKN signalling is altered in rats with CHF, we first performed quantitative RT-PCR and Western blot analysis and followed these experiments with functional studies in rats with CHF and sham-operated control rats. We found a significant increase in CX3CR1 mRNA and protein expression, as determined by quantitative RT-PCR and Western blot analysis, respectively, in the PVN of rats with CHF compared with sham-operated control rats. We also found that the blood pressure effects of FKN (2.5 nmol in 50 nl) were significantly attenuated in rats with CHF (change in mean arterial pressure, -6 ± 3 mmHg) compared with sham-operated control rats (change in mean arterial pressure, -16 ± 6 mmHg). These data suggest that FKN and its receptor, CX3CR1, modulate cardiovascular function at the level of the PVN and that the actions of FKN within this nucleus are altered in heart failure
Resumo:
The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.
Resumo:
Sex hormones influence immune responses and the development of autoimmune diseases including MS and its animal model, EAE. Although it has been previously reported that ovariectomy could worsen EAE, the mechanisms implicated in the protective action of endogenous ovarian hormones have not been addressed. In this report, we now show that endogenous estrogens limit EAE development and CNS inflammation in adult female mice through estrogen receptor expression in the host non-hematopoietic tissues. We provide evidence that the enhancing effect of gonadectomy on EAE development was due to quantitative rather than qualitative changes in effector Th1 or Th17 cell recruitment into the CNS. Consistent with this observation, adoptive transfer of myelin oligodendrocyte glycoprotein-specific encephalitogenic CD4(+) T lymphocytes induced more severe EAE in ovariectomized mice as compared to normal female mice. Finally, we show that gonadectomy accelerated the early recruitment of inflammatory cells into the CNS upon adoptive transfer of encephalitogenic CD4(+) T cells. Altogether, these data show that endogenous estrogens, through estrogen receptor , exert a protective effect on EAE by limiting the recruitment of blood-derived inflammatory cells into the CNS.
Resumo:
The large production of immunoglobulin (Ig)A is energetically costly. The fact that evolution retained this apparent luxury of intestinal class switch recombination to IgA within the human population strongly indicates that there must be a critical specific function of IgA for survival of the species. The function of IgA has been investigated in a series of different models that will be discussed here. While IgA has clear protective functions against toxins or in the context of intestinal viral infections, the function of IgA specific for non-pathogenic commensal bacteria remains unclear. In the context of the current literature we present a hypothesis where secretory IgA integrates as an additional layer of immune function into the continuum of intestinal CD4 T cell responses, to achieve a mutualistic relationship between the intestinal commensal microbiota and the host.
Resumo:
In continuation of the long tradition of mass spectrometric research at the University of Bern, our group focuses on the characterization of nucleic acids as therapeutic agents and as drug targets. This article provides a short overview of our recent work on platinated single-stranded and higher-order nucleic acids. Nearly three decades ago the development of soft ionization techniques opened a whole new chapter in the mass spectrometric analysis of not only nucleic acids themselves, but also their interactions with potential drug candidates. In contrast to modern next generation sequencing approaches, though, the goal of the tandem mass spectrometric investigation of nucleic acids is by no means the complete sequencing of genetic DNA, but rather the characterization of short therapeutic and regulatory oligonucleotides and the elucidation of nucleic acid–drug interactions. The influence of cisplatin binding on the gas-phase dissociation of nucleic acids was studied by the means of electrospray ionization tandem mass spectrometry. Experiments on native and modified DNA and RNA oligomers confirmed guanine base pairs as the preferred platination site and laid the basis for the formulation of a gas-phase fragmentation mechanism of platinated oligonucleotides. The study was extended to double stranded DNA and DNA quadruplexes. While duplexes are believed to be the main target of cisplatin in vivo, the recently discovered DNA quadruplexes constitute another promising target for anti-tumor drugs owing to their regulatory functions in the cell cycle.
Resumo:
A sedimentological and palynological study of three sediment cores from the northern Mekong River Delta shows the regional sedimentary and environmental development since the mid-Holocene sea level highstand. A sub- to intertidal flat deposit of mid-Holocene age is recorded in the northernmost core. Shoreline deposits in all three cores show descending ages from N to S documenting 1) the early stages of the late Holocene regression and 2) the subsequent delta progradation. The delta plain successions vary from floodplain deposits with swamp-like elements to natural levee sediments. The uppermost sediments in all cores show human disturbance to varying degrees. The most intense alteration is recorded in the northernmost core where the palynological signal together with a charcoal peak indicates the profound change of the environment during the modern land reclamation. The sediments from at least one of the three presented cores do not show a "true" delta facies succession, but rather estuary-like features, as also observed in records from southern Cambodia. This absence is probably due to lack of accommodation space during the initial phase of rapid delta progradation which impeded the development of "true" delta successions as shown in cores from the southern Mekong River Delta.
Resumo:
New Pb, Sr, and Nd isotope data are presented for 64 samples from the six backarc sites drilled during Leg 135. Systematic changes in Pb and Sr compositions illustrate significant isotopic variations between and within sites as well as provide two key pieces of information. First, a recent influx of asthenosphere with Indian Ocean mantle affinities has occurred and has successfully displaced older "Pacific" asthenosphere from the mantle underlying the backarc region. Second, clear evidence exists for mixing between these two asthenospheric end-members and at least one "arc-like" component. The latter was not the same as most material currently erupting in the Tofua Arc, but it must have had a more radiogenic Pb-isotope signature, perhaps similar to rocks analyzed from the islands of Tafahi, and Niuatoputapu. A comparison between the isotopic variations and the tectonic setting of the drill sites reveals consistent and important information regarding the mantle dynamics beneath the evolving backarc basin. We propose a model in which the source of upwelling magmas changes from Pacific to Indian Ocean asthenosphere with the propagation of seafloor spreading, a model with important implications for the rate of mantle influx into this region. Although the chemistries of backarc magmas have been profoundly influenced by this process, an additional consequence is the advection of Indian Ocean asthenosphere into the sub-arc mantle source. The isotopic compositions of arc rocks from the vicinity have been reevaluated on the basis of the proposed mantle advection model. We suggest that the slab-derived flux of trace elements into the arc wedge has remained relatively uniform with time (i.e., ~40 Ma), so that the change in arc chemistry results from mantle source substitution, rather than from differences in the composition of the downgoing plate.
(Table 2) Radiocarbon datings and calibrated ages of cores obtained from the Nordic and Barents Seas
Resumo:
CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. One of the main concerns of CCS is whether CO2 may remain confined within the geological formation into which it is injected since post-injection CO2 migration in the time scale of years, decades and centuries is not well understood. Theoretically, CO2 can be retained at depth i) as a supercritical fluid (physical trapping), ii) as a fluid slowly migrating in an aquifer due to long flow path (hydrodynamic trapping), iii) dissolved into ground waters (solubility trapping) and iv) precipitated secondary carbonates. Carbon dioxide will be injected in the near future (2012) at Hontomín (Burgos, Spain) in the frame of the Compostilla EEPR project, led by the Fundación Ciudad de la Energía (CIUDEN). In order to detect leakage in the operational stage, a pre-injection geochemical baseline is presently being developed. In this work a geochemical monitoring design is presented to provide information about the feasibility of CO2 storage at depth.
Resumo:
En los últimos años, las sociedades industrializadas han tomado una mayor conciencia sobre el problema que suponen las emisiones indiscriminadas de gases de efecto invernadero a la atmósfera. El hormigón, cuyo principal componente es el cemento, es probablemente el material más utilizado en construcción. En la actualidad, las emisiones globales de CO2 debidas a la combustión del CaCO3 del cemento Pórtland representan entre el 5% y el 10% respecto del total. Estos valores son de gran interés si se considera que el compromiso aceptado al firmar el Protocolo de Kioto es de una reducción del 5% antes del año 2020, sobre el total de gases producidos. El principal objetivo del presente trabajo es el estudio microestructural y de los procesos de hidratación de los cementos con adiciones. Para ello se propone contribuir a la investigación sobre nuevos productos cementicios basados en micropartículas esféricas vítreas que pueden adicionarse al cemento antes del proceso de amasado. Los resultados obtenidos se han contrastado con las adiciones convencionales de más uso en la actualidad. El nuevo material basa su composición en la química del aluminio y el silicio. Al disminuir la cantidad de CaCO3, se contribuye al desarrollo sostenible y a la reducción de emisiones de CO2. La patente creada por el Grupo Cementos Pórtland Valderrivas (GCPV), describe el proceso de producción de las cemesferas (WO 2009/007470, 2010). Los productos que forman la materia prima para la elaboración de las cemesferas son arcillas, calizas, margas o productos o subproductos industriales, que tras su molienda, son fundidos mediante un fluido gaseoso a elevada temperatura (entre 1250ºC y 1600ºC). Este proceso permite obtener un producto final en forma esférica maciza o microesfera, que tras estabilizarse mediante un enfriamiento rápido, consigue una alta vitrificación idónea para su reactividad química, con una mínima superficie específica en relación a su masa. El producto final obtenido presenta prácticamente la finura requerida y no precisa ser molido, lo que reduce las emisiones de CO2 por el ahorro de combustible durante el proceso de molienda. El proceso descrito permite obtener un amplio abanico de materiales cementantes que, no solo pueden dar respuesta a los problemas generados por las emisiones de CO2, sino también a la disponibilidad de materiales en países donde hasta el momento no se puede fabricar cemento debido a la falta de calizas. Complementariamente se ha optimizado el método de cálculo del grado de hidratación a partir de los resultados del ensayo de ATD-TG en base a los modelos de cálculo de Bhatty y Pane. El método propuesto permite interpretar el comportamiento futuro del material a partir de la interpolación numérica de la cantidad de agua químicamente enlazada. La evolución del grado de hidratación tiene una relación directa con el desarrollo de la resistencia mecánica del material. Con el fin de caracterizar los materiales de base cemento, se ha llevado a cabo una amplia campaña experimental en pasta de cemento, mortero y hormigón. La investigación abarca tres niveles: caracterización microestructural, macroestructural y caracterización del comportamiento a largo plazo, fundamentalmente durabilidad. En total se han evaluado ocho adiciones diferentes: cuatro adiciones convencionales y cuatro tipos de cemesferas con diferente composición química. Los ensayos a escala microscópica comprenden la caracterización química, granulométrica y de la superficie específica BET de los materiales anhidros, análisis térmico diferencial y termogravimétrico en pasta de cemento y mortero, resonancia magnética de silicio en pasta de cemento, difracción de rayos X de los materiales anhidros y de las probetas de pasta, microscopía electrónica de barrido con analizador de energía dispersiva por rayos X en pasta y mortero, y porosimetría por intrusión de mercurio en mortero. La caracterización macroscópica del material comprende ensayos de determinación del agua de consistencia normal y de los tiempos de inicio y fin de fraguado en pasta de cemento, ensayos de resistencia mecánica a flexión y compresión en probetas prismáticas de mortero, y ensayos de resistencia a compresión en probetas de hormigón. Para caracterizar la durabilidad se han desarrollado ensayos de determinación del coeficiente de migración de cloruros y ensayos de resistividad eléctrica en probetas de mortero. Todos los ensayos enumerados permiten clarificar el comportamiento de las cemesferas y compararlo con las distintas adiciones de uso convencional. Los resultados reflejan un buen comportamiento resistente y durable de los materiales con adición de cemesferas. La caracterización microscópica refleja su relación con las propiedades mesoscópicas y permite comprender mejor la evolución en los procesos de hidratación de las cemesferas. In recent years industrialised societies have become increasingly aware of the problem posed by indiscriminate emission of greenhouse gases into the atmosphere. Concrete, with a main component being cement, is arguably the most widely used construction material. At present, global emissions of CO2 due to the combustion of CaCO3 from Portland cement represent between 5% and 10% of the total. If the requirement of the Kyoto Protocol of a reduction of 5% of the total gas produced before 2020 is considered, then such values are of significant interest. The main objective of this work is the assessment of the microstructure and the hydration processes of cements with additions. Such an examination proposes research into new cementitious products based on vitreous spherical microparticles that may be added to the cement before the mixing process. The results are compared with the most commonly used conventional additions. The new material bases its composition on the chemistry of aluminium and silicates. By decreasing the amount of CaCO3, it is possible both to contribute to sustainable development and reduce CO2 emissions. The patent created by Grupo Cementos Portland Valderrivas (GCPV) describes the production process of microspheres (WO 2009/007470, 2010). The products that form the raw material for manufacture are clays, lime-stone, marl and industrial products or by-products that melt after being ground and fed into a gaseous fluid at high temperatures (1250°C and 1600°C). This process allows the obtaining of a product with a solid-spherical or micro-spherical shape and which, after being stabilised in a solid state by rapid cooling, obtains a high vitrification suitable for chemical reactivity, having a minimal surface in relation to its mass. Given that the final product has the fineness required, it prevents grinding that reduces CO2 emissions by saving fuel during this process. The process, which allows a wide range of cementitious materials to be obtained, not only addresses the problems caused by CO2 emissions but also enhances the availability of materials in countries that until the time of writing have not produced cement due to a lack of limestone. In addition, the calculation of the degree of hydration from the test results of DTA-TG is optimised and based on Bhatty and Pane calculation models. The proposed method allows prediction of the performance of the material from numerical interpolation of the amount of chemically bound water. The degree of hydration has a direct relationship with the development of material mechanical strength. In order to characterise the cement-based materials, an extensive experimental campaign in cement paste, concrete and mortar is conducted. The research comprises three levels: micro-structural characterisation, macro-structural and long-term behaviour (mainly durability). In total, eight additions are assessed: four conventional additions and four types of microspheres with different chemical compositions. The micro-scale tests include characterisation of chemical composition, particle size distribution and the BET specific surface area of anhydrous material, differential thermal and thermogravimetric analysis in cement paste and mortar, silicon-29 nuclear magnetic resonance in cement paste, X-ray diffraction of the anhydrous materials and paste specimens, scanning of electron microscopy with energy dispersive X-ray analyser in cement paste and mortar, and mercury intrusion porosimetry in mortar. The macroscopic material characterisation entails determination of water demand for normal consistency, and initial and final setting times of cement paste, flexural and compressive mechanical strength tests in prismatic mortar specimens, and compressive strength tests in concrete specimens. Tests for determining the chloride migration coefficient are performed to characterise durability, together with electrical resistivity tests in mortar specimens. All the tests listed allow clarification of the behaviour of the microspheres and comparison with the various additions of conventional use. The results show good resistance and durable behaviour of materials with a microsphere addition. Microscopic characterisation reflects their relationship with mesoscopic properties and provides insights into the hydration processes of the microspheres.
Resumo:
Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple, rearranged, and/or truncated transgene fragments. All fragments of transgenic DNA cosegregated, indicating that they were integrated at single gene loci. Analysis of the structure of the transgenic loci indicated that the transgenic DNA was interspersed by the host genomic DNA. The number of insertions of transgenic DNA within the transgene loci varied from 2 to 12 among the 13 lines. Restriction endonucleases that do not cleave the introduced plasmids produced restriction fragments ranging from 3.6 to about 60 kb in length hybridizing to a probe comprising the introduced plasmids. Although the size of the interspersing host DNA within the transgene locus is unknown, the sizes of the transgene-hybridizing restriction fragments indicated that the entire transgene locus must be at least from 35–280 kb. The observation that all transgenic lines analyzed exhibited genomic interspersion of multiple clustered transgenes suggests a predominating integration mechanism. We propose that transgene integration at multiple clustered DNA replication forks could account for the observed interspersion of transgenic DNA with host genomic DNA within transgenic loci.